\ ¥

Workbook
TMap Suite

Studying for the TMap"® Suite Certification

._ 2 A
%

Sogeti Nederland B.V.
Vianen, 2016



Contents

(@0 Ty ] (=Y 1 | {3 RS 2
(oo [T o3 o o T 6
Chapter T Mr. MIiKKEI'S MUSINGS .......uceeeveieereeeerreeecseecseesssnesssnssssnsssssnssssasssssassssasssssassssassssanssssans 7
1.1 Mr. Mikkel's Musings (1) on Building Blocks 7
1.2 Mr. Mikkel's Musings (2) on the elements 8
1.3 Mr. Mikkel's Musings (3) on built-in quality in a quality-driven approach 11
Chapter 2 BUIlAING BIOCKS........ccoveeerreecrseercseecssaesssaescsssssssnsssssassssssssssasssssassssasssssnssssnssssasssssasssse 14
21 Building Block 1: Test Manager 14
22 Building Block 2: Test Manager in fraditional environments 14
23 Building Block 3: Assignment 15
24 Building Block 4: Test Organization 16
25 Building Block 5: Test Plan 18
2.6 Building Block é: Product risk analysis 19
27 Building Block 7: Test sirategy 20
28 Building Block 8: Performance testing 22
29 Building Block 9: Test approaches 25
2.10 Building Block 10: Crowd-testing 26
2.1 Building Block 11: Test varieties 27
212 Building Block 12: Test Manager in Agile environments 28
213 Building Block 13: Permanent test organization 29
2.14 Building Block 14: Model-based testing 30
215 Building Block 15: Quality policy 32
2.16 Building Block 16: Using test tools 35
217 Building Block 17: Quality-driven characteristics 36
2.18 Building Block 18: Integrated Test Organization 39
2.19 Building Block 19: Implementing test tools 41
2.20 Building Block 20: Reviewing requirements 42
CRAPIET 3 WEDSITE «..aeeceeeeeeecneeeecrceeeteccsenescssneeseecssnsesessssnessssssnnssssssnsasesssssesssssasssssssnassssssnnne 44
3.1 Introduction 44
31,1 REAAING GUIAE ...iiiiiieiese ettt sttt sae et e s beesaesaesaesseeseessesseennas 44
312 WY 15T AESIONZ .ottt st e sae s b e ere e b e ereeneas 44
3.1.3 The Benefits of Test Design According to the TMAp Suite .....ccovecveevevicicieieciene, 46

3.2 Framework and Importance of Testing 46
728 I [ 011 (o Y [Tl 1 o O OSSR 46
3.2.2 The GeneriC Test DESIGN STEPS .ouiviirieieiereceeete ettt seene 48



3.2.3
3.2.4
3.2.5
3.2.6

3.3
3.3.1
3.3.2

3.4
3.4.1
3.4.2
3.4.3

3.5
3.5.1
3.5.2
3.5.3
3.5.4
3.5.5
3.5.6
3.5.7

3.6
3.6.1
3.6.2
3.6.3
3.6.4
3.6.5

3.7
3.7.1
3.7.2
3.7.3
3.7.4
3.7.5
3.7.6
3.7.7
3.7.8
3.7.9

Chapter 4
4.1

4.3
4.3.1

Coverage, coverage types and test intensity ...c.ocvceecevecceecececeeeeeeeeeeee 50

TEST APPIOACNES ...ttt ae e e e ta e e e re e eaa e e tte e eaasaeeases 56
Test AeSIgN TECHNIQUES ......ovieceeece e s reea e eraeeeas 57
Selection of coverage types and test design techniques.......cccccveeveecieeieeneeee. 58
Coverage Types Process 59
INTTOAUCTION .ottt ettt v e s te et et ss s e s sessaesbestesreesnesaeeseens 59
P OIS ettt st e b et e e e st e et e e beeetaensaennteennean 59
Coverage Types Conditions 62
INTTOAUCTION .ottt ettt v e s te et et s s s e s sessaesbessesreesnesaeeseens 62
DECISION POINTS ..ttt ettt ettt et e et e e e st e e e e beeaveesbeesaeseesseesaeessennseas 62
NY=T aa T o) 15 TSP 79
Coverage Types Data 79
INTTOAUCTION .ttt sttt v e sttt ss s sreesaesbestesreesnesaneseens 79
EQUIVAIENCE CIASSES ...ttt ettt et et eeve et eaaeear e eve e taeeaneenne s 79
BoUNAAry VAIUE ANAIYSIS.....ecouieeeieerieceeeeeeeeete ettt ettt eeve e eveeeaseeaeeeveeeaaeeane e e 82
DatA COMBDINATIONS....cuiiiitieieeeeeee ettt ettt er et sb bbb e seessesbesbesseeaesaessnens 84
S T OIX ettt ettt e e et e et e e et e e ate e ebe s et e e ett e e tteeearaeenrees 86
CRUD ettt sttt s e ettt e v e as e b e se e s b e st e saesbesaeesaessantesseeseesbesseeseansesseeseas 87
INTEGITY TUIES .ttt sttt v e ere bbb b e e s e b e teeseesnesaeesnens 90
Coverage Types Appearance 1
INTTOAUCTION .ottt ettt b e e te et et ss s e s sessae s b e tesseesaesaeeseens 21
PrESENTATION 1.ttt ettt e reeae e eneens 21
LOOA PrOFIlES ittt ettt ettt ae e be e ste e s e ebe e sra e saesaseeaneas 92
OPEratiONAI PrOflES ..ttt et besaaeeaveenns 93
HEUTISTICS .teeteee ettt ettt ettt et e e e te e e bt e tbesaaeetaeesaeeabeenseessaesseessaesaenssennsens 94
A basic set of test design techniques 94
INTTOAUCTION et ettt ettt be e be e sbe e b e e be e sre e saessaeenneas 94
Data Combination TESt (DCOT) ..ecieieeieiee ettt 95
Process CyCle TEST [PCT) ittt ettt sttt 101
SYNTACHT TEST (SYN) ettt sttt et sae s et s e snnens 105
SEMANTIC TEST (SEM) ittt sae s ve v ra s snens 108
DeCision TADIE TEST (DTT) wovicieiiiicieieeee ettt et s e aeeaeennas 111
Elementary Comparison TESH (ECT) ...cuirircieeeeeeeeeeeeeeeeeeeee e 118
DatA CYClE TEST (DCYT) cuvetieieieiieiieieeete et ste ettt et se e nsesseeneennes 130
REAI-LIFE TEST (RLT) ettt ettt et sr et se e e nnes 135
TMAP NEXT QNFO .cuuvireniinininiriiiisarissninssassssssessssssssssssssssssssssssssssssssssssasssssssssssssssanss 139
What is testing? 139
What is STruCtUred teSTINGZ..eciiiieeeceee et s 141
THE role OFf TESTING ittt eae e eareas 142
The essentials Of TMAPR NEXT® ......oi ittt s 147
Testing in an agile eNVIFONMENT ... 160
Process: acceptance and System teStS ... 170
Process: developmMENT SIS ..ot 174
Test professionals 174
INTTOAUCTION ettt et e e sre et s be e b e e sseeabe e beensaensaenens 174
POINTS OF CONCEIMN ..ottt nees 175
CRAOFACTEIISTICS ettt ettt ettt ettt re e et esbesreesaesbebeeaeesaesaesseessanes 176
Acceptance and System Tests 177
INTTOAUCTION ettt et e ettt be e b e e saeeabeebeensaensaenens 177



43.2
433
43.4
43.5
4.3.6
437
438

4.4
4.4.1

4.5
4.5.1
452
453
4.5.4

4.6
4.6.1
4.6.2
4.6.3
4.6.4

4.7
4.7.1
4.7.2
47.3
4.7.4

438
4.8.1
48.2
483
48.4
48.5

4.9
491
492
493
4.9.4
49.5
49.6
49.7

4.10
4.10.1
4.10.2
4.103
4.104
4.10.5

4.11
4.11.1
4.11.2
4.11.3
4.11.4
4.11.5

PIANNING PRASE ...ttt sttt v et ss bbb e beeaeennas
CONITOL PNASE et et ettt tte e e taae e eteeeeareeeannas
Setting up and maintaining infrastructure PhaAse ......cccceveeeeceiviesecieeeen,
Preparation PROSE ... et e
SPECITICATION PNASE ..ottt e rb e e aeeaaeeareas
EXECUTION PNOSE ettt ettt et e nes
(@] aa] o] =71 Te] o e] ol 11 TSR

Quality characteristics

LI B 172 € TSRS

Test environments

INTTOTAUCTION et e e e er e e e e e eenaeeenneeenneean
Setting Up teSt @NVIFONMENTS .....ooiiiieee et
Problems in 1St €NVIFONMENTS........coouii et
BN el a'gTe Yo =Y ISR

Test tools

INTTOAUCTION ettt ettt ev et ers e b esbeessesbesaeessennas
Test 1OO0IS EXPICINED ....c.viieeeeeeeee ettt et eaeeareeveen
TYPES Of TEST TOOIS ..ottt ettt e et e eareeaveen
Implementing fest tools with a 00l POIICY ....ccecveciecieieceeee e,

Defects management

INTTOAUCTION ettt ettt e ve et ers b b beesaesbesteesaennas
FINAING O AEFECT ittt e naas
[ (Yo I (=T o1 o TR R R
PrOCEAUIE ...ttt ettt ettt n e s e sesseeneennas

Development tests

INTTOAUCTION Lttt st b ettt be e
Development testing eXplaiNed........cceeiecieriereeieere e
Context of development teSHNG .ooi i
L0 T 1T TSR
UNit iINTEGIATION TS .o e

Estimating the test effort

Estimation DASEd ON FATIOS.....iceecieeeeee ettt
Estimation based on test ObJECT SIZ€....ooiiiiiiieeeece e
WOrk BreaKAOWN STTUCTUIE .....oiiiiieciecece ettt s e
Evaluation estimation ApRroaC ...
Proportionate eStmMaOtioN ...t
EXITAPOITTION ettt ettt ettt et ettt ete e ereeteeaae e
TEST POINT ANQIYSIS ettt ettt ettt eeeere e taeeaeeareearean

Metrics
INTTOAUCTION ..ttt ettt se s e eneennes
GQM METNOA IN SIX STEPS ettt
HINTS AN IS .ottt sttt se e eneas
Practical starting set of test MetriCS ..o,
IMETTICS TIST .ttt sttt b e sttt

Evaluation techniques
INTTOAUCTION ..ttt sr e s vt sb b b e sa e eteennennas
EvAluQtion EXPlaiNEd ......ooouvieeieeeeeeeeeeee ettt e e
[N S OB CTIONS ..ttt ettt ettt ettt et eete v e e teeeteeeteeetaeeteeeteeeaaeeaneenreens
REVIEWS ettt ettt ettt sv e ettt et b et e s e esaesaesseessessesseeseessessesseessansesseessans
A e |1 a1 (U L | 1TSS




4.11.6

412
4.12.1
4.12.2
4.12.3
4.12.4
4125
4.12.6

413

References

Evaluation technique selection MaAtriX ... 408
Quality measures during development 409
Test-Driven Development (TDD) ...ttt e 409
PAir PrOgramMIiNG co..ocveeeeieieceieteseeteete ettt sttt e sveessesbesre s ess e seessessesessaennes 411
COUE TEVIEW .ttt et sttt sa e ebesra e s b e e s s ass e saesaessensassesneensas 411
CoNfiNUOUS INTEGIATION ..c.vieeiiiicieeee ettt be s aennes 412
Agreed upon quality of development tests ..., 413
Application integrator APPIOACKH ..o 416
Infroduction master test plan 417
.................................................................................................................................... 420

This work (or any part thereof) may not be reproduced and/or published (for whatever purpose) in
print, photocopy, microfiim, audio tape, electronically orin any other way whatsoever without prior

written permission from Sogeti Nederland B.V. (Sogeti).



Infroduction

Why this workbook?

Since its infroduction in 1995 TMap (Test Management Approach) has grown to become
the standard for the structured testing of software. This position was further reinforced with
the arrival of TMap NEXT® in 2006. Test Managers and Testers validate their professionalism
by obtaining the EXIN certification TMap NEXT® Test Master or Test Engineer.

The continuous improvement of the method has led to the development of the TMap Suite
in 2014. The TMap Suite consists of the following components:

¢ The new approach: TMap HD - Human Driven. A
quality-driven test method for modern agile
organizations. This is described in the novel "Neil's
Quest for Quality".

* The new TMap.net website. This new website
contains the Building Blocks of TMap. They can be
used to build your own test method.

* TMap NEXT® is a method of testing for organizations
using traditional development methods such as
waterfall.

This workbook has been developed as support for

obtaining the EXIN cerfification TMap® Suite Test Manager
and Test Engineer. It is a compilation from several sources of literature (from TMap HD, the
website and TMap NEXT), which together constitute the material for the exams. This is not a
new TMap book and it contains no new information compared to previous books. The
order of the sources in this book does not imply the importance of the various subjects, nor
does it indicate in which order the subjects should be studied. It is only meant as a tool for
examinees and to clarify which parts of the TMap Suite are included in the material for the
exam. In order to understand the connection between the various subjects, it is imperative
to refer to the original books (and website) or attend a training that leads up to this
certification.

In the first chapter TMap HD is discussed. This chapter contains the relevant parts of this
novel. The second chapteris about the Building Blocks of TMap. In the third chapter we
take a look at the welbsite TMap.net. And finally, the relevant information from the TMap
Next book is included in the fourth and final chapter.



Chapter 1 Mr. Mikkel's Musings

The reflections below are taken from the book "Neil's Quest for Quality”.

1.1 Mr. Mikkel’s Musings (1) on Building Blocks

“A journey of a thousand miles begins with a single step.”
Lao Tze

Typically, when I'm coaching someone on quality and testing, | find that they can be
overwhelmed if they are presented with a whole method for quality and test all at once. It
is much easier to present each part of the method independently and acquaint them with
one part before infroducing the next. Often it is best to start with the parts that are most
important to their situation, have them learn and implement these, and then start on the
next one.

The same thing works on a larger scale as well. When organizations want to change to a
better quality and testing method, it is much easier for them to learn one part well,
implement that part to solve a particular problem, and then look for a next part. When an
organization is confronted with a whole new process all at once, this often leads to poor
understanding of this process. In those cases, many steps and tools are not very well
understood. This leads fo situations where following the method becomes the goal rather
than solving the problem at hand. This leads to the 'in-name-only variants' of standard
methods.

Furthermore, every organization is different and has different needs for its testing method.
Are you Agile, or more traditional?z Do you have to meet very formal quality standards or
note Do you have very experienced people in your organization or are you a young and
eager company that has to learn a lote

All those things and more have an influence on how you model the testing and quality
method for your organization. This means that every organization has its own optimum
method. A method that can be optimal for an organization at one pointin time, can
become less optimal when something changes in the situation. For instance, the
introduction of a new tool that makes it easier to test certain things may demand a
change in the method.

What people and organizations find very helpful is to build up the method gradually
themselves, with the aid of Building Blocks. A Building Block is a process step or a tool or a
role that can solve a particular testing and quality problem in your organization. A Building
Block can also be fitted into the existing method, or moved around within the method. For
instance, a specific test may be shifted to a point earlier in the lifecycle to detect certain
faults earlier in the process.

You can also make your own Building Blocks. If your organization has to conform to
specific standards, for example, you can create a special building block to check whether
or not these standards are being met.

A great starting collection of Building Blocks of TMap HD can be found on www.tmap.net.
Feel free to use them as you please and adapt them to your specific situation!



| can imagine that you would like more inspiration on the topic of how to link Building
Blocks together. This is all part of the TMap Suite and can be found on tmap.net as well.

1.2 Mr. Mikkel’s Musings (2) on the elements

“It's elementary, my dear Watson"
Sherlock Holmes, in the film The Return of Sherlock Holmes’

When | coached Neil, | introduced to him the 5 elements of quality-driven testing.

These elements have two purposes. On the one hand, they are elements of evolution of
the quality and testing profession. The profession of quality and testing is changing and
these elements indicate the direction of this change.

The elements also helped Neil to make choices, to achieve better results and find answers
to questions such as:

«  Whatis the best test strategy?

« How can | test more and faster?

+ How can | accomplish better quality?
*  Which Building Blocks can | use?2

+ How can | apply the Building Blocks?

Simplify

“Everything must be made as simple as possible. But not simpler.”
Albert Einstein

Ever since the start of ITin business, the ITlandscape has been growing more and more
complex. The implication for testing and quality is that growing complexity requires more
testing to address all relations and effects concerning the chain of I solutions. To end this
upward spiral, it is important to simplify, standardize and decouple. Testing and quality as
a profession can simplify their activities in step with the simplification of the IT environment.

Apart from simplifying the testing in step with the simplification of the IT landscape, the
efficiency of test activities can be improved by keeping the activities small-scale and
clear: only those test activities necessary to achieve business value are carried out, but no
more than these. Test strategy, test techniques should be chosen in a way that suits the
particular situation the best.

Integrate

" Every kind of peaceful cooperation among men is primarily based on mutual trust and
only secondarily on institutions such as courts of justice and police."
Albert Einstein

A part of the evolution in ITis the need to integrate. IT complexity is reduced by structuring,
simplifying and standardizing IT solutions within a coherent It landscape, and by integrating
IT solutions with business processes.



The process of creating such solutions is under enormous pressure. Integration is one of the
answers, where all disciplines involved in the process of creating IT solutions need to
cooperate betterin order to increase efficiency, speed and quality.

Integration with respect to testing denotes to a shared way of working, with a shared
responsibility for quality. Testing is not a stand-alone process and should integrate
seamlessly in its environment.

The integration of testing and quality approaches is not new. Testing is a measure fo cover
a risk, alongside other measures. Sometimes a risk can be covered by exira tests,
sometimes it is better to cover it by other quality measures such as pair-programming or
test-driven techniques. The point is: in an infegrated approach, a risk does not HAVE o be
covered by testing.

Industrialize

“The monotony of a quiet life stimulates the creative mind.”
Albert Einstein

The standardization of tests provides opportunities for the automation of test execution.
Models can be used to automatically generate test cases. In fact, every kind of test
activity can by supported by a tool. For example, the planning of a test can be supported
by test-management tooling, the specification of a test by model-based methods, there
are test-execution tools, and a test environment can be managed with service
virtualization and test-data-management tooling. There are also integrated tools, quality
suites or lifecycle suites.

The element of Industrialize is very important in improving testing and optimizing quality.

Test tools can be used to test more, more often, and faster. More information on the
element of Industrialize can be found in Building Blocks about test fools.

The element of Industrialize implies aspects such as:

» Test automation

» Accelerators

» Standardization

e Re-use

« Test design techniques
« Templates

* Test environments

People

“The important thing is not to stop questioning.”
Albert Einstein

Having a method is one thing, applying it is another. Different project management
approaches, different company cultures, different quality demands, different
environments, etc. They all call for wise use of any method. Without the right people to
execute the method, any method will fail.



People need to have the right skills and the right knowledge o perform their jobs. In a
quality-driven approach, the appropriate mindset for right-first-time is essential as well.
Everybody has a certain notion of quality. Quality professionals are skilled and trained fo
make the relevant quality aspects tangible and measurable.

Tests can be performed by anyone in an organization, as long as they are helped in this by
professional testers who have the critical mindset to test adequately and effectively.

It is the People element that makes it possible to move from testing according to TMap to
testing with TMap. For this, you need to have people with a wide knowledge of quality and
testing, and the right mindset to be able to apply the Building Blocks in a way that suits
their organization. Hence the name TMap HD - Human Driven.

Confidence

“Not everything that can be counted counts, and not everything that counts can be
counted.”
Albert Einstein

A fifth element emerges from the four elements: Confidence. That is an extra element over
and above the others. The 4 elements improve the approach to testing. In conjunction
they form the vital basis from which this 5th element arises: Confidence is where they all
lead to. It is the 5th element that makes the need for a quality-driven approach
unavoidable. The need for reliable 1T solutions increases when the dependence on It
increases.

Quality is often defined as 'fit for purpose’, but some of my peers state that quality is an
irrafional sense, and therefore cannot be caught in a definition. The fact is: these 4
elements are indispensible in the creation of confidence in IT solutions.



1.3 Mr. Mikkel’s Musings (3) on built-in quality in a quality-
driven approach

Perspectives

People usually look aft situations from their viewpoint, based on their position, experience
and values. The same situation can be described from all these viewpoints, resulting in
different stories, sometimes identical, sometimes seemingly contradictory.

W, &

Figure 1. Different understandings due to different perspectives

Seabiscuit is a project like many others. Neil described it from his viewpoint, from a quality
and testing manager's perspective. This perspective was rather new to him and | was

asked to guide him. Owen, Rupert, Francine, Rajiv, Hal and certainly Danielle had different
perspectives. It is important to realize that everybody was looking at the same reality.

Quality is built into the process

Rupert's intfervention, demanding a quality-driven approach to improve the confidence in
IT solutions, made Neil change his viewpoint from the end of the development process to a
coordinating position. In a quality-driven approach it is essential that quality be built into
the process. Tests are used to monitor the quality during the whole process. Built-in quality
is one of the key principles in the Lean approach, as well as continuous improvement,
elimination of waste, valuing people. Built-in quality, continuously improved, leads to Right-
First-Time, where the outcome of the process fully meets the expectations: fit-for-purpose.

Handling of test and quality issues

Quality refers to the quality of the outcome of the process: the product quality. Process
and product quality are strongly linked. Customer value is an essential perspective. That is
why a quality-driven approach should also be business-driven. A product is specified and
designed for all aspects of the lifecycle. Any deviation in the expected product quality
should be detected as soon as possible and should lead to measures. Fixing the fault is not
enough, it is essential to improve the process to prevent such defects from happening
again. That is how quality is built in. That is how product quality is improved by adjusting the
process. An extra test orimproving a test (e.g., regression test) can be one of such
adjustments, alongside other quality measures. That is also why Neil needed a way fo

11



oversee the whole process and needed a way to influence the total approach even prior
to the actual start, supporting the project manager and the team:s. Testing is integrated
into the development process.

Using the elements to create a quality-driven approach

From his quality and test perspective, Neil used the available Building Blocks in an
improved way. | mentioned the elements to do so: Infegrate, People, Industrialize and
Simplify, where testing leads to Confidence in the developed solutions.

« Simplify is always important in all activities, and should be done whenever there is
an opportunity. Simplifying the approach by creating short/cycles to keep change
small and simple is an example.

* Integrate isimportant to cooperate, have short communication lines, work in a
business-driven way. Quality is a shared responsibility.

» Industrialize is important to built in many checks during the entire process, in order
to detect defects automatically. In Lean manufacturing, these checks are
automated as much as possible.

* People's attitudes and mindsets contribute greatly to the quality-driven approach.
When people are held accountable for delivering quantity or for delivering before
a deadline without a defined quality standard, one should not be surprised that
the quality is low. When you give people responsibility for a high level of quality and
let them decide on their working process, a different outcome can be expected.

+ Confidence is the main driver of a quality-driven approach.

The development process: Agile - Waterfall

Which development process is actually used is less important. Quality-driven principles can
be built info every process. In the first part of the Seabiscuit project, 780 used a waterfall
process; in the second part an Agile process was used. Not because waterfall is bad and
Agile is better. Quality-driven elements (simplify, integrate, industrialize, people) can be
practiced in all approaches.

Agile has some Lean principles built in, but it is the quality-driven mindset of the people
that makes it work. However, Agile is not always a success and not always suitable or
applicable, whereas waterfall projects can be very successful.

Long-term effect: project versus staff

It is the mindset focusing on quality by confinuous improvement. The ambition is set to zero
defects, meaning that there are no deviations from the specified quality criteria. Lean
manufacturing has shown that these continuous improvements will result, over time, in
rising quality and decreasing costs. A choice is made in favor of the long-term effect.
Projects are temporary organizational structures that are not always suitable to obtain
long-term effects. That is why a permanent, cross-project organization is important: it
consists of a quality staff, who develop and maintain a quality policy, test expertise, a
policy on quality and testing tools etc, This policy is passed to projects when they start. In
the story, | gave an example of a company that applied this in a project environment
independent of the development process used.



Conclusions

So waterfall or Agile is not a choice between good or bad, but an appeal to consider
both thoughtfully. It will always be a matter of deliberation. There are even circumstances
where a quick and dirty disposable solution will be the best choice. Or the best start,
where the disposable is followed by a long-term final solution, as with lower operating
costs, for example, or to support a more effective business process. It all depends on the
intended purpose.

It is that fit for purpose, also called 'quality’, that determines the approach to quality and
testing.

Project form, development method, test strategy, etc.: these are all linked and have to be
integrated. An adequate integrated method is applicable to every scenario.

An approach for testing is defined by using the Building Blocks in a suitable way.

I am sure that appropriate patterns of Building Blocks, new methods and best practices will
arise for all kinds of specific situations. When we all work together and share, we all benefit.



Chapter 2 Building Blocks

These Building Blocks are from the book “Neil’s Quest for Quality”. These are the parts of
the TMAP HD book required for the EXIN exam.

2.1 Building Block 1: Test Manager

What do test managers do? In traditional organizations, they assign people to projects,
oversee the testers' progress, provide feedback, and maybe offer some coaching fo
people who want it. Test managers build trusting relationships with their staff and build up
the capacity of the testing group. How does that change with a fransition o Agile? Is
there still a need for test managers? The answers to these questions are given in the Test
manager in fraditional environments' and 'Test manager in agile environments' Building
Blocks. The first will be given directly below this building block, the ‘Test manager in Agile
environments' can be found in Building Block 12.

In this book we use 'test manager' as a generic term. In practice, you can find many
different terms that refer to this role, such as 'test coordinator, 'test leader’, 'project leader
testing', 'test director', and many more. Sometimes these terms refer to different levels in
the organization, when several test coordinators are subordinate to a test manager, for
example. We advise you always to make a clear definition of the role and the
responsibilities in your specific situation.

2.2 Building Block 2: Test Manager in traditional environments

In fraditional organizations, the test manager leads a team of test coordinators and/or
testers. Since the test manager oversees the entire testing process, he ought to be able to
prevent a fragmented approach. Today's test manager also fries to shift the focus of
testing at the end of a project toward other quality measures that can be implemented at
the start of a project, such as reviews, inspections, proofs of concept. He or she is the
linking pin in drafting the test strategy, bringing all the necessary parties and information
together. The test manager is responsible for the planning, management and execution of
testing, ensuring that it is on time and on budget and at the right quality, for multiple test
varieties. The test manager reports in line with the overall test plan on the progress of the
test process and the quality of the test object.

Examples of the test manager tasks:

« Creating the instructions for the test products delivered by the various test varieties

+ Checking adherence to the instructions (infernal reviews)

« Coordinating the various test activities that apply to the test varieties, such as
setting up and managing the technical infrastructure

» Creating guidelines for communication and reporting between the test varieties,
and the test process and the suppliers

« Sefting up overall test-method-related, technical and functional support

+ Keeping the various test plans consistent

* Reporting on the overall test progress, budget and quality of the test object,
preferably automated with a test management tool

*  Managing expectations of different stakeholders with respect to test progress and
quality

« Deploying/hiring (exira) test personnel.



The relationship between the specified roles, the test varieties and the relationships with
the other stakeholders in the system development process must be determined and
documented. The testing organization is clearly part of the bigger (project) picture. Refer
to figure 2 for some examples. In these examples, reporting lines and supporting
departments, such as a test expertise centre for example, have been omitted.

Explanation of the examples:

e Example a
The test manager is completely independent of both the project manager and the
subproject realization lead, and works at the same level as the project manager.

«  Example b
The test manager is dependent on the project manager, but independent of the
subproject realization lead, and works at the same level as the subproject
realization lead.

e Example c
The test manager is dependent on the subproject realization lead.

Project Test
Manager Manager
&RT”ihrim"t"t’ Realization | Implementation
rchitecture
Lead Lead Lead

Project
Manager

&RT”:‘?“‘B"“ Realization | Implementation Test
rtg:zcw re Lead Lead Manager

Project
Manager
Requirgments Realization Implementation
& Architecture Lead Lead
Lead

Test
Manager

Figure 2. Examples of positions of the test manager in projects
2.3 Building Block 3: Assignment

In general: no job without an assignment. This also applies to a job such as establishing the
quality of a product. On a high level, one could say that the assignment must make clear



to the stakeholders just what the aim, tasks, responsibilities and authorizations of the job
are.

Assignments come in different flavors. For instance, an assignment in a traditionall
development environment will differ from an assignment in an Agile development
environment and an assignment in a low-risk product environment will differ from an
assignment in a high-risk environment. Does this mean that there are no general activities
that can be undertaken to establish an assignmente No, on the contrary. The form of the
end result of these activities — in a plan of many pages or only a sketch on a white board -
may vary, but generic activities can certainly be identfified.

A non-exhaustive overview of possible questions you have to answer in order to clarify the
assignment:

1. Whos the client2 The client is the person giving the assignment for the job. It could
be a business manager, project manager, steering committee, scrum team, etc.

2. Whois responsible for executing the assignment? It could be a scrum team, fest
manager, project manager, a third party, etc.

3. What exactly is the job? Think of determining the quality of the product, covering
(product) risks, meeting predefined test goals, efc.

4. Who are the acceptorsg Often the person executing the assignment is not the one
who accepts the product. So who does? It could be a business manager, a
product owner, a group of stakeholders, a scrum tfeam, operations, etc. Please
note that the client does not have o be the — only — acceptor.

5. What are the acceptance criteria?

6. Determine the scope of the assignment. Determine not only what is within the
scope, but also what is outside the scope of the assignment. Determine, for
instance, the boundaries of the system (which interfaces with adjacent systems are
within / out of the scope), whether administrative organization procedures are in
scope or not, where applicable which test levels (e.g., unit test, system test,
acceptance test) are within the scope and which are executed by other parties,
etc.

7. Which preconditions must be mete Preconditions describe the requirements
imposed on the assignment by other parties within the assignment. Such
requirements may be: 'operate within the existing quality, risk and/or testing policy’,
'meet previously quantified aspects like the risks to be covered, results or quality to
be achieved', the time limit in a business case or other planning schedules, etc.

8. Which information will we share with the stakeholderse This can be done in many
ways. Agreements are often made with the client and possible other stakeholders
about reporting. Often risk and quality reports are desired. Reporting can be done
at aregular or ad hoc basis and/or at the end of a project. Many organizations
have standard forms in which to report.

2.4 Building Block 4: Test Organization

The management and execution of testing can be implemented in many forms. After all,
everyone is responsible for quality, and almost everyone is involved in some form of testing.
Therefore it is impossible to determine one particular, preferred organizational setup for
testing. In general, the structure of the test organization should resemble that of the
associated process of system development. In many cases, this means the project
organization. If there is to be frequent (re)testing in combination with scarce (test)
knowledge, the permanent test organization (e.g., line or staff organization) becomes a
candidate.



Organizational implementations for testing

The most significant organizational forms are briefly mentioned below, along with a few
examples. For the organization of testing activities, the possibilities can largely be defined
as follows:

« Testing as an independent activity or integrated with other activities
« Testing placed within a project, a permanent (test) organization or in the cloud

These choices depend on the test variety (refer to the Test Varieties' building block), the
project and the organization. For possible organizational implementations, see figure 3.

Testing Independent activity | Integrated with other
activities

Project * Systern test * Unit test
CIGLLTFGILL] « Acceptance test » Tests in agile environ-
« Security, Performance = ments (e.g. scrum,
Usability test DevOps)

Permanent NECREESTaTTsY » Maintenance process,
organization NCREEA NG end to end test
s Test expertise centre organization

Cloud « Crowd test (e.g. beta, (No common
compatibility, usability,  examples)
game, mobility test)

Figure 3. Organizational implementations with examples

The descriptions below are explicitly meant as a general indication; there are often
exceptions in practice:

« Testing as an independent activity in a project
Within the project, a team is responsible for organizing and executing the test. The
testers within the team usually have a lot of test knowledge, together with —
depending on the test variety — a mix of system, domain and organizational
knowledge.

+ Testing integrated within a project
In fraditional development projects, test activities involving unit testing are
integrated into the development process. In Agile projects, testers, users, designers
and developers work in the same team. There are often several teams (e.g., scrum
or DevOps teams) in action. Testing is a role within this team and the feam as a
whole is responsible for executing the test. Besides profound testing knowledge,
each feam member with a testing role, as a rule, also has much domain and
technical knowledge of the system and architecture (refer to building block 18 —
integrated test organization).



+ Testing as an independent permanent organization
A separate department or organization has festing — both the organization and
execution — as its primary task. Projects or other line departments issue a certain fest
instruction to this department/organization. Test knowledge is predominant. (See
building block 13 — permanent test organization — for two common types of
organization).

« Testing integrated in the line organization
Within a development or system management department, the role of tester is
often combined with other roles (e.g., with the role of functional maintenance).
The tester in this organizational form often possesses considerable system and/or
organizational knowledge.

» Testing as an independent activity in the cloud
Crowdsourced testing is an emerging trend in software testing which exploits the
benefits, effectiveness and efficiency of crowdsourcing and the cloud platform. It
differs from traditional testing methods in that the testing is carried out by a number
of different testers from different places, and not by hired consultants and
professionals. Often these testers are very skilled, but the quality of the testing work
can vary since you never know who will be involved in a particular testing task.

2.5 Building Block 5: Test Plan

Failing to plan is planning to fail. So we do need a fest plan — and what should be in ite
Project plans are often crafted but sometimes hardly read in real-life practice. So should
there be a separate test plan2 There are questions about testing that pop up in all
sifuations, and need to be addressed.

Think of:

*  What do we need to teste

*  Who will test what at what moment?

*  How will we teste

*  How much time will the testing take?

*  Whenis the test ready?

* How can we organize and manage the testing?

*  What kind of test products do we need to deliver, and can we manage them?2
*  What kind of test environment do we need?

Of course there could be more questions, but these are the most important.

Elaborating these topics guides our thinking on important matters and forces us to confront
the challenges that await us. The results of the elaboration (which preferably includes
several options) may be established in a test plan, depending on the applied
development method, (product) risks involved, trust, purpose, regulations, responsibilities,
etc. Since a planis primarily a means of communication between the various
stakeholders, the following questions can be posed:

*  Why are we writing this in the plan: does the tfeam need this in order to carry out
our work?
« Forwhom are we writing this in the plan: do the stakeholders have to know this?



The answer is situation-specific, of course, but if the team and the stakeholders respond
negatively to both questions, writing these topics in the plan would appear to be
unnecessary.

So, what could a plan look like? In practice, this varies from a sketch on a whiteboard to
test aspects integrated in project plans (or sprint plans) to documents with many pages.
Often there are Master Test Plans (gearing the various test varieties to one another) and
Detailed Test Plans (elaborated test plans on test variety level). And sometimes there is no
visible plan at all. As when, for instance, one is working in and as a feam and the members
understand each other blindly.

2.6 Building Block 6: Product risk analysis

Projects should follow an integral testing and quality policy, for quality is a mindset, not a
feature. Quality as such ought to be an integral part of project management. Looking at
project governance, several aspects play an important role: costs, risks, time and benefits
(also referred to as 'results' or [business] value).

Although all of these aspects are important, it is worth emphasizing the aspect of risk,
especially product risk, as this may help as a steering mechanism. It may help you find the
balance between 'building the right thing', 'building the thing right', and 'building it fast'.

No project has unlimited time, money and resources for assessing the quality of the
product. Such constraints in ferms of time, money and resources represent constraints on
the result to be achieved and therefore often mean reduced possibilities to assess the
product risks. As such, it is important to achieve a well-considered balance between the
investment in money and time on the one hand, and the results to be achieved and the
risks covered on the other. The result of the product risk analysis provides the justification for
this balance. Based on insight resulting from the product-risk analysis, high-risk products
can be covered more intensively than those representing a lower risk. Be aware that risks
and ways to cover these risks are directly related to the acceptance criteria (see the
'Assignment’ building block). These acceptance criteria are available in various forms: as a
section in a test plan, in the confirmation part of a story card, in a definition of done, etc.

There are many approaches to the way risks are determined. However, in general, one
could say: these approaches involve analyzing the product to be assessed with the aim of
achieving a joint view — for and with all stakeholders — of (the properties of) the product to
be assessed, in terms of higher and lower risk levels. This should be done in such a way that
appropriate measures can be assigned to this view.

Exactly which measures should be taken to cover these analyzed risks is decided when
determining the quality strategy. This means that the right quality is designed and built in,
not tested in! This means that everyone should embrace risk and quality thinking right from
the beginning of the project. When a requirement is described (e.g., user story, use case),
forinstance, the staff should start thinking about possible risks and how to cover these, by
executing an inspection of the requirements (such as a Fagan inspection for example). Or
when the system architecture is (being) defined, they should rethink the possible risks and
how to cover these, by means of a proof of concept. A last example of risk coverage is to
assign specific coverage types in order to cover identified (product) risks. Read more
about risk coverage, and the measures that can be taken as part of the test strategy in
the 'Test Strategy' Building Blocks. But first things first. How do you determine the risk level
anyway? A good starting place to find more approaches is tmap.net. There you will find



approaches such as: TMap's Product Risk Analysis, PRISMA®!, PRIMA®2 and Risk Poker in scrum.
Although there are many useful approaches, the basis often proves to be surprisingly
similar. Just look at the definition of product risk, which will differ in wording, but notin
meaning:

A product risk is the chance that the product will fail in relatfion to the expected damage if
it does fail:

Product risk = Chance of failure x Damage

Sometimes 'chance of failure' is referred to as 'likelihood of occurrence' and 'damage' as
'impact’. It really doesn't matter because the result will ultimately be similar, if not the same.

Three types of risk can be distinguished. When the primary effect of the potential problem
relates to product quality, potential problems are referred to as 'quality risks' or 'product
risks'. When the primary effect of the potential problem is on the process of the
organization, it is referred to as a 'process risk'. When the primary effect of the potential
problem is on project success, potential problems are referred to as 'project risks' or
'‘planning risks'.

The above is about identifying risks and risk coverage. Sometimes people look upon things
in a different way. They try to answer questions such as: What is the importance of a
partficular product2 Or what is the urgency of a particular product?

This is important, of course. The product delivers most added value if the product is realized
at the right time. And if this is not done correctly it may have a hugely negative impact on
the success of the project (which is an example of a planning / project risk). This can also
be combined with the product-risk analysis. Examples of this kind of integrated approach
are 'Product Risk and Benefit' (PRBA) analysis or 'Risk and Value' analysis.

2.7 Building Block 7: Test strategy

The assignment, the product risk analysis together with the test strategy form the basis of
virtually all test activities (refer to the 'Assignment’ and 'Product Risk Analysis' Building
Blocks). The product risk analysis contains the legitimacy concerning what must be tested
and which risks are inherent in the process. The test strategy defines which of these ought
to be covered and how. This may influence the priorities in a project, in the sense of the
greater the risk, the higher the priority (and desired coverage), for instance. Decisions
involving what should or should not be done, with respect to time, costs and benefits (also
referred to as results or business value) may also be influenced. An often-used definition for
test strategy is the following:

"The distribution of the test effort and coverage over the products to be tested aimed at
finding the most important defects as early and cheaply as possible.”

This definition is closely related to covering risks. But what about the other project aspects
such as costs, fime and benefitse After all, each project emphasizes one or several of
these aspects (refer to 'Assignment’). The emphasis must be franslated into specific choices

1 PRISMA is a registered trademark of Improve Quality Services
2pRIMA is a registered frademark of Valori

20



in the test strategy. An emphatic choice for one of the aspects offen has an impact on
the other aspects. If there is a maximum budget, for example, maybe not all identified risks
can be allocated the desired coverage, which could result in the fact that the acceptors
have to tolerate a certain residual risk when releasing the item into production. Or, with
respect to a mission and safety critical system with a sky-high business value, for example,
the risks must be covered thoroughly. However, this may involve additional time and cost.
Besides all this, the following principles are often applied as well:

+ Defects must be found as close to the defect injection point as possible (fewer
repair costs, quick learning curve).

« The bigger the risk, the more intense the test.

e Norrisk, no test.

Please remember that these are principles. 'No risk, no test', for instance, is something that
will not occur in practice when building a piece of software. There will always be some risk
involved, or the piece of software isn't worth developing in the first place.

All these considerations can be captured in a strategy table. Just as there are many
approaches for carrying out a product risk analysis, there are also many kinds of test
strategy tables. The following list of test strategy aspects is in no way complete or
mandatory. It merely provides a start-up list from which aspects can be removed or
changed or added. Aspects addressed in a test strategy table could be (refer to figure 4
‘Test strategy table’):

e Risk
Risk is a generic term, but may include: test risks, product risks, project risks or
planning risks.

* Risk Level
The level of risk as decided by all stakeholders during a product risk analysis.

e  When
One of the test strategy principles runs as follows: 'The earlier a defect can be
found, the better —if useful.' So it is important to decide when a quality measure
must be executed.

* Location/ By Whom
This clearly shows, where and by whom the responsibility lies for the execution of
the quality measure(s).

+ Test Variety
A test variety represents a certain need for testing, no matter how this is organized.
Other terms may be used such as test level, test type, etc.

*  (Quality) Measure
In order to cover a specific risk, one or more quality measures are assigned to
cover this risk. While assigning the quality measure(s), the level of risk is explicitly
taken into account.

Of course, you should adapt the table completely to your own situation!

21



High

When

Design Phase

Location/
By Whom

Test
Variety

(Quality)
Measure

Proof of Concept

Low

Project Startup

Test into Course

High

DesignPhase

Test Phase

Evaluation

Acceptance Test

Inspection

CT: Path

Medium

Performance

Realization Phase

Performance Test

CT: Load Praofile

Change Request y ST

Design Phase

Test Phase

Evaluation

Acceptance Test

Review

CT: Data Row

Requirement z

Design Phase

Evaluation

Inspection

Test Phase

Exploratory Test

n.a.

Figure 4. Test strategy table (CT. Coverage Type)
2.8 Building Block 8: Performance testing

People often use the statement 'No Risk, No Test'. For the performance of it systems, the 'No
Risk' situation simply doesn't exist anymore. Performance optimization is critical when the
user-experience in even the most frivial system can be impacted by bad performance.
This optimization becomes even more important with technology integrating in all aspects
of our professional and personal life (i.e., cloud-based computing, mobile solutions and the
Internet of Things).

Perhaps the most important aspect of performance testing is the organizational aspect.
The IT organization (in the form of a Performance Test Expertise Center for instance) must
be able to support organization-wide changes in Design, Develop, Testing and
Maintenance practices with regard to system performance. This requires the capability to
implement tools and methodologies that meet project-specific needs and requirements
(Agile, non-Agile and maintenance). In Agile specifically, performance testing must be
able to support work processes in sprints as well as across sprints or teams. This
performance-testing effort can be supported via a structured performance-testing
approach, providing easy access to tfools and resourcing from a specialist resource pool.

Performance testing is possible in different test varieties, with a big difference in the type of
tools used, skill sets needed and, most importantly, the intensity of testing and analysis. The
most important Performance Testing varieties with some (but not all) of the activities
required are shown:

Design for Performance Testing

For a long time, performance testing's main concern was to gather requirements and
expand the performance aspects of those requirements. In many performance test
activities, this at least resulted in knowing when performance was (exiremely) bad. Design
for Performance puts the focus on designing for good performance, and providing SMART
requirements as input for validating that performance. The Performance Testing effort is

22



not actively involved in all aspects of Design for Performance, but provides the framework
for capturing performance-related requirements from an early stage.

Activities:

*  Making sure to include click-path or workflow descripfions into Ul and application
design: This provides useful and SMART requirements for performance testing in all
application lifecycle stages

+ Attention for performance aspects: From a Product Risk Analysis that focuses on
specific aspects of the system (instead of just "Performance is a high priority") to
end-user involvement on click-path design and documenting expected usage
levels (this is also an important Product Owner responsibility)

« Designing for performance testability: Without compromising on quality, design
choices on everything from database to security aspects can facilitate the optimal
use of available performance test fooling (or signal the need for additional
tooling).

Develop for Performance Testing

At the most technical level a project must look at performance testing at a component
(unit testing) level, as well as a system (infegration testing) level. This results in working with -
platform-specific best practices in design and development. With different design choices
(and performance consequences) for anything from erp-based systems to portal or mobile
solutions, there is no one-size-fits-all solution. Constant vigilance is required to keep up with
new versions of development frameworks and the resulting performance impacts (both
good and bad). This 'Develop for Performance (Testing)' approach is then validated for
the first time in testing specific components (web services/ database access etc.) during
the Unit/Integration testing phase.

Activities:

« Develop for performance: Use of best practices (market as well as company
specific) with a focus on clearly defined application components (i.e., Service
Layer design patterns)

+ Platform (including database) specific tooling and training: Test-driven
development. If applicable, a performance test must be designed and executed
as part of unit and integration testing

« Implementing specifically designed stubs or simulation software for not yet
available system components.

Acceptance Performance Testing
This is considered the traditional approach to performance testing. Load and Iteration
Models are created, based on user profiles and click-paths through the application. These

models ought to match the expected load and mix of usage patterns for a large group of
end-users.

Activities:

+ Deploying and using Performance Test Tooling

23



* Network traffic Capture and Playback tooling: Designing, building and maintaining
the (production-like) test environment and using the available tools to create
individual performance test scripts

* Multi-load generator controllers: Designing and implementing the performance
scenario (mix of test scripts) to simulate the load on the system, as defined in the
requirements.

End-to-End Performance testing

As part of a continuous attention to performance optimization, the impact of different
applications on the total landscape must be tested. A permanent test organization (i.e.,
Performance Testing Expertise Center) can combine and re-use scripts and scenarios for
multiple applications into an End-to-End Performance Test.

Activities:

+ Deploying and using Performance Test Tooling as defined in Acceptance
Performance Testing

« Test Lab set-up: Design and maintain a lab with enough capacity or flexibility to run
multiple applications in a test scenario (additional skills needed in network
components, virtual machine management, network experience, etc.)

*  Environment monitoring: Running and maintaining similar tooling as that used in the
production environment, with the performance test tooling able fo fie into those
monitoring results.

Production Performance Monitoring

Performance monitoring in the production environment has a number of different goals.
The primary goal is to safeguard business processes and provide early warnings of
performance degradation. This is done by monitoring available resources throughout the I
infrastructure. By running performance test scripts (for a very limited number of simulated
users) in the production environment, the end-user performance experience can also be
monitored.

A secondary goal for running test scripts and monitoring results in production is to provide
feedback to earlier performance-testing levels. Are the designed tests still an accurate
representation of user behaviore This prevents the occurrence of a situation in which a test
and monitoring setup no longer represents real-life usage. When more and more traffic is
being generated from mobile devices, the resulting load has to run in parallel alongside
traditional (pc-based) browser usage in all varieties of performance testing.

Activities:

« Mulfi-load generator controllers: running low-impact test scenarios (perhaps
outside peak business hours) that provide continuous performance results

« Environment monitoring: Running and maintaining monitoring tools and providing
reports/results that can be compared to current test results in earlier stages of the
application lifecycle.

24



2.9 Building Block 9: Test approaches

When you have made choices about what needs to be tested and just how thoroughly
specific parts need to be tested, the next choice is how to actually test them. There are
two approaches to performing tests: experience-based and coverage-based.

Experience-based

Experience-based testing leaves the tester free to design test cases in advance or to
create them on the spot during the test execution. These tests are based on the tester's
skills, intuition and experience. Part of Experience-based testing may be considered:

« Checklist-based: The experienced tester uses a high-level list of items to be noted,
checked, or remembered, or a set of rules or criteria against which a product has
to be verified.

« Error Guessing: Based on the tester's experience, he goes in search of defect-
sensitive spots in the system and devises suitable test cases for these.

* Exploratory festing: The simultaneous learning, designing and executing of tests; in
other words, every form of testing in which the tester designs his tests during the test
execution and the information obtained is reused to design new and improved test
cases. Exploratory testing can be very well applied with the use of coverage types.

Coverage-based

Coverage-based is a way to derive and select test situations based on an analysis of the
test basis, applying selected coverage types in order to achieve a desired coverage.
Coverage has everything to do with the wish to efficiently and effectively gather
information about quality and risks, and to find the greatest possible number of defects,
with the fewest possible test cases, aimed at specific aspects of the test object. A
coverage type focuses on achieving a specific coverage to detect specific types of
defect.

There are roughly four groups of coverage types.

1. Process: Processes can be identified at several levels. There are algorithms of
control flows and business processes. Coverage types such as paths, statement
coverage, and state transitions can be used to test (variations in) these processes.

2. Conditions: Within almost every system, there are decision points where the system
behavior can go in different directions, depending on the outcome of such a
decision point. Variations of these conditions and their outcomes can be tested
using coverage types such as decision coverage, modified condition / decision
coverage, and multiple condition coverage.

3. Data: Data are created and end when they are removed. In between, the data
are used by updating them or consulting them. This lifecycle of data can be
tested, as well as combinations of input data, and the attributes of input or output
data. Boundary values, CRUD, Data flows and Syntax are examples of coverage
types in this context.

4. Appearance: The way a system operates, how it performs, what its appearance
should be, is often described in terms of non-functional requirements. Within this
group, we find coverage types such as operational and load profiles and
presentation.

25



2.10 Building Block 10: Crowd-testing

Crowd-testing, or crowdsourced testing, is when a virtual group of testers throughout the
world (a crowd) is involved in testing, rather than only a traditionally managed test team
at a single location.

'Crowd-testing' has its roofts in 'crowd-sourcing'. The key to the success of crowd sourcing is
that a lot more ideas can be generated within a larger group of people, and those ideas
can influence and support each other. Current Cloud and Web 2.0 technologies enable
the sharing of ideas within large groups. This same advantage applies to crowd-sourced
testing: many testers can find plenty of places to look for bugs, and the bugs that one
tester finds can influence other testers to look for similar bugs.

Crowd-testing has a second advantage. It is not just the ideas and experience of the
different members that are more diverse, but also the different hardware and software
configurations that the software under scrutiny is tested against. Crowd-testing enables a
test where software can be tested on a large number of devices, browsers and operating
systems, where all tests are executed in parallel, minimizing the throughput time of the
tests.

Managing a crowd of testers entails a different set of challenges than managing a
traditional test feam. The following are some of the considerations to take into account:

Testers or end users

Do you want your crowd to go actively looking for bugs or do you want them to use the
software as they would in real life2 In the first case, pick experienced test professionals as
crowd-testers. In the second case, pick typical end-users.

Organize your own test crowd or use a crowd-testing company

In some cases it is not possible to release the software beyond the bounds of your own
company. Financial institutions have an issue with releasing software to a large crowd of
relatively unknown people. If this is the case, you can organize a crowd test (or more
exactly: a closed beta-test) among your own employees. However, if there are no
constrictions on releasing a test version of your software outside the company, there are
numerous companies available with a global crowd of testers that can amount to
hundreds of thousands.

Rewarding the crowd
There are different ways to manage the crowd. One thing to consider is: how do | reward
my testerse If you are managing a closed beta within a company, rewards are often for

executing the whole test. For instance, if your company members test a new kind of
device, they can keep the device after the test.

If you are managing a public cloud, there may be other ways to reward testers. Two
possibilities are often used:

+ Payment for each bug found
+ Payment for each test case executed.

26



A disadvantage of rewarding the crowd for each bug is that, with a primary focus on
finding bugs, it may be difficult to get a good picture of the overall quality of the system
under test.

Disadvantages of crowd testing

Crowd-testing offers some clear advantages as stated above. However, there are some
disadvantages that limit the use of crowd-testing as it is currently developing.

+ Confidentiality: the larger the crowd and the more it is outside the sphere of
influence, the harder it becomes to manage confidentiality.

* Knowledge: not every application is suited for crowd-testing from a knowledge
perspective — many applications are used within a company and specific
knowledge of company products and processes is required to operate the
software.

« Testers who are paid by the bug' will often look for easy-to-find bugs instead of
looking for the most critical ones.

« Ensuring total test coverage can be difficult with crowd-testing.

2.11 Building Block 11: Test varieties

When organizing testing, the test manager adhering to the fraditional view on testing had
to structure the testing activities in a hierarchical way, based on quality characteristics. But
a test manager often distinguished various stages too. Defined terms such as Test Level,
Test Type, Test Phase and Test Stage were often used.

In today's view on testing, the people involved in testing are hesitant to use the word Test
Level since it seems to imply that various groups, based on various hierarchical
responsibilities, will perform various testing tasks without any interaction between these test
levels.

Moreover, many testers have often struggled to distinguish between Test Levels and Test
Types. And a Test Stage —is that identical to a Test Level or not?

What should be our focus when organizing testing?

All testing activities must collectively cover all important areas and aspects of the system
under test: that is the main objective.

To cope with the confusion around how to distinguish testing tasks, we infroduce the term
Test Variety.

The term Test Variety aims at making all stakeholders aware that there will always be
different needs for testing, and therefore different test varieties will have to be organized.
Whether these are organized separately or combined depends on the situation.

There may be many reasons for having different test varieties. For example, there are
different stakeholders who ought to be involved: programmers have a different focus in
their testing than business representatives do. This is often related to responsibility and
accountability for testing activities. The quality characteristics that have to be addressed
form another reason for distinguishing test varieties. Maintainability for example, demands
totally different testing activities than usability does.

27



Traditionally, different aspects were separately approached as a group of testing activities
that had been brought togetherin a test level. Many people know the 'functional
acceptance test’, whose name already indicates that testing was not complete because
it obviously didn't focus on non-functional aspects. In the new view, functional and non-
functional testing can be seen as test varieties. Depending on the circumstances, such as
the application lifecycle model that is used, these test varieties are organized either
together or separately. The main concern is that all relevant test varieties are carried out
one way or another.

Inexperienced Agile teams tend to focus their testing efforts on 'unit testing'; that is, testing
whether or not computer programs meet the technical needs. This is definitively one of the
important test varieties. But another important aspect is to validate whether or not the
business goals have been met, the 'acceptance testing', which may be done by the
product owner in an Agile team. Not all Agile teams realize that this test variety is equally
important. In practice, these varieties of testing must be done by the Agile team in the
same iteration, so the test varieties in this example can be considered as having been
organized together, even though different team members may work on different test
varieties. Of course, the Agile team will also distinguish additional test varieties, such as
performance testing and security testing, which might also be done during the iteration.

However, especially in a larger organization, the people involved also will see the need for
test varieties that cannot be done by a single team within their iteration, but have to be
organized separately instead, such as an end-to-end fest.

If you have ever taken part in a discussion on whether end-to-end testing is a test level or a
test type, you will recognize that this doesn't actually matter, as long as the testing
activities related to the end-to-end business process are carried out properly.

So let's use the term Test Variety, to make everybody involved aware of the fact that there
are different points of view towards testing activities, and we can make sure that the
interests of all stakeholders will be covered by addressing these in a well-considered way.

2.12 Building Block 12: Test Manager in Agile environments

Test managers tend to be quite nervous about Agile. As the focus of a festing feam
switches to collaboration on products and projects, rather than testing being an isolated
phase or service, it may feel like the need for a test manager disappears. Because testers
should be communicating their progress directly within their project feams, providing their
estimates as part of an Agile methodology and using just-in-time fest planning, there
would seem to be no need for a test manager who acts as an intermediary or overseer at
a project level. But what about the other test-management activitiese How does Agile
take care of that? Let's look into the scrum example below:

There are three roles in a scrum team: the product owner, the scrum master and
the team members (or developers). The team is self-organizing and
multidisciplinary, without managers. There is no room for test managers in this type
of team. Testing is a role that every team member should be able to execute. The
fact that ‘test manager' has not been adopted as a function in a scrum team does
not mean that the test management actfivities should not be executed. On the
contrary, these remain unfailingly important. But they may be executed by any
random team member with the appropriate expertise and skills. Nevertheless, it is
advisable to have a professional tester in the team, to guarantee available test

28



expertise. This tester (might be a former test manager) has knowledge of the
execution of arisk analysis, the execution of evaluations, test design techniques,
the formulation and execution of test cases, test autfomation, etc. But this does not
mean that all test activities must be executed by this tester. Other tfeam members
may be requested to provide support in the creation and execution of the test
cases, for example. In such a situation, the professional tester can act as coach. If
a team cannot guarantee sufficient test expertise, it may be an option to allow a
test manager from outside the team to support and coach the tester(s).

But in general, in Agile environments, one could see the test-manager role as evolving to a
higher-level position that includes or concerns:

* In sprint zero: advisor to the team — how to cope with responsibility for quality?2

« Facilitation of inter-team communication across many Agile projects within an
organization

» Presenting an aggregate view of testing utilization to high-level management

« Personal support, mentoring, and professional development for testers (e.g., as a
line manager)

« Being an escalation point for testers

« Budgeting or forecasting for testing as a service (dependent on organizational
process — testing as a service must be used)

* Beinginvolved in scrum-of-scrum meetings

» Providing advice regarding quality

» Functioning as a stakeholder for the product owner

+ Combining with the scrum-master role.

2.13 Building Block 13: Permanent test organization

Two types of permanent test organization are common in actual practice. These are (see
figure 5):

« The permanent test organization as a test expertise centre (1EC)

« The permanent test organization as a test factory (1) or test line (1)

The two differ in, among other things, the services they offer and their responsibilities in this
respect. The tec (often implemented as a "staff organization”) is mainly a supplying and
advisory organization that takes on an 'obligation of effort’ at most when providing
services. For instance, it may supply testers or fest managers for a project or even for
another line organization within the company. Or offer advice on a test method of
operation or fest tool o be used (e.g., fo a scrum or DevOps team). The activities are
always executed under the responsibility of the project.

The TF or L accepts an 'obligation to deliver results' for many of ifs services. The process can
be compared with a factory with permanent personnel (testers), machinery
(infrastructure), standardized work procedures, etc. Different clients (departments,
projects, systems) can outsource their complete test assignments to this type of test
organization that is organized as a 'line organization'.

The term Test Competence center of excellence also pops up often, when talking about a
permanent test organization. This can be any of the mentioned structures.

Both test organizations make a distinction, based on demand frequency in the test
services. The test service is approached from a different perspective for incidental requests
('set up a test environment') than for structural requests ('test releases’).

29



Result Project TForTL ,
Agreement Outsourcing

Hiring TEC  Opiigation
Testers to Deliver

Incidental Structural

Figure 5. Two common types of permanent test organizations
2.14 Building Block 14: Model-based testing

Creating test cases in any development method is at the core of testing and can be very
fime consuming, especially when conducted manually. Also, test case development can
be prone to interpretation errors when the test base — be it requirements, design
documents or any other artfifact —is ambiguous.

Model Based Testing (MBT) ranges from full-blown test automation in which test cases from
models are created and executed all in one go by an MBT suite via Model-Based Test
Design (MBTd), aiming at shortening test case development lead time to Model-Based
Review (MBR). In turn, this aims at reducing test base ambiguity but without delivering
actual test cases.

Model-Based Review

In MBR, models are means to an end, the end being verifying that the source of the test
cases is clear and complete. The tester composes one or more models so that end users,
analysts, designers etc. can verify the tester's understanding of the subject. The source can
be tangible documents, but also 'in the heads of anyone'.

The basic compelling idea behind MBR is that models are unambiguous by nature, so flaws
such as incompleteness, inconsistency and incorrectness catch the eye more easily.

Models are also a limited view on redlity, so often several models need to be composed to
represent a complete picture of what's in the design artifacts or 'in the heads of' those
involved. For example, a process is best represented by a flow diagram, but a 'Yes/No'
decision in that process might be subject to several basic 'Yes/No' conditions. These
conditions could be modeled individually and explicitly in the flow diagram, but the model
of preference for conditions is the decision table or pseudo code.

30



Model-Based Test Design

MBTd builds on the unambiguity of models: they can be automatically interpreted and
converted to test cases. The model's completeness and level of detail determines the
ability to derive physical test cases for automated test execution, logical test cases for
manual testing, or anything in between. The architecture of the system under test is also an
important factor in the feasibility of the end result: system-testing a soA-based application
is a better candidate for automatically executed physical test cases than End-to-End
testing that involves many systems beyond the control of the tester.

If married ar
older than 64 or
holder geld card

Then
Eligible

Else
Not eligible

Endif

64y Y[Y NN

Eligible? | Y'Y Y ¥ ¥ ¥ Y N

Figure 6. Model Based Test design

The basis for MBTd can be either design models or 'test models' from MBR: (re)using design
models is often the quickest and easiest way to implement MBTd. There is one aspect,
however, that deserves special attentfion: do the design models contain sufficient detail to
safisfy the tester's test goalse This is not always the case: if, forinstance, the test goal is fo
verify adherence to design standards, it is very unlikely that the design models explicitly
model these standards! Complementing existing models with test specific details might
prove to be more labor-intensive than formulating test models from scratch.

Full-blown automated Model-Based Testing

At ifs optimum, MBT reduces the testing effort to creatfing and/or reviewing models, after
which one push of a button suffices to create and execute the test. There are several
suites that deliver this capability, but a multiple-step approach can also be viable,
employing different tools for different steps, making a staged implementation of MBT
possible. One reason for a stfaged approach is the opportunity to re-use the installed base
of tools and automation frameworks.

A very nice 'side effect' of MBR is the gradual transference of pure test models to all-
purpose models, used in analysis, design and test alike, because designers assume
ownership after reviewing the models. So MBT integrates in a bi-directional way: testers use
design models for MBTd, and designers assume ownership of MBR test models.

31



Perhaps the greatest benefit of MBT lies in maintenance: adjusting a (test or design) model
and then regenerating tens or even hundreds of test cases with the push of a button can
never be equaled by manual test case maintenance: not in terms of lead time, notin
terms of cost and not in terms of quality!

MBR and MBTd each bring their own individual benefits, but the combination of the two is
the strongest application, at best eliminating interpretations errors and averting manual
test execution.

2.15 Building Block 15: Quality policy

In general, companies that make structural use of festing do have a test policy.

Companies that consider quality to be of structural value have a quality policy. 'Policy' is
used here as the overarching term. Other ferms used in this context are 'mission’, 'vision',
'strategy’.

A quality policy includes choices made by management that are generally applicable to
operating activities. Sometimes it has the form of a formal and cerfified quality system.
That, too, is a management choice. 1509000 is a well-known standard for quality
certification.

In the main, a quality policy ensures that an organization, product or service is consistent
and is focused not only on product and service quality, but also on the means to achieve
it.

What are the constituents of a quality policy2

A quality policy is always based on the company's strategy. It commonly includes subjects
like: vision on quality, objectives, scope and quality principles (e.g., about customer focus,
leadership, people, a systematic approach through processes, used quality standards or
models, continuous improvement, etc).

If it concerns IT projects it will incorporate subjects such as: ambition level on quality,
continuous improvement, methods used, common tooling, how quality and test expertise
is organized. In general: all the choices that are cross-projects.

When do you need a quality policy?

That decision is up to fop management, but generally it is needed to ensure that quality
aspects are treated in the same way throughout the entire company, in a way that
reflects the company's values. When a policy is needed, then the redaction, application
and control is typically assigned to a QA staff department.

How does one create and maintain a policy?

The following figure shows the processes involved in creating, applying and maintaining a
quality policy in a project environment, related fo the change process.

32



Change proces

Quality Policy

1
1
L I_. " Tl
sting Services !
h J
Strategic Start-up 1 §Check | & Test :
Dialogue Policy 1 I
- External ) ~ :
| developments -, :
A |
1
[}

Change proces Implement

improveme
develop

Operations

Figure 7. Quality policy process in a project environment

The change process is central, essentially consisting of two steps: decide on how to react
to developments and execute the decisions. The figure shows quality and testing services
to support this process. Usually assigned to a QA staff department, these services consist
essentially of three parts:

« The decisions process is supported from the quality perspective. The existing policy
is applied, adapted or extended in a strategic dialogue with the deciding
management.

«  When the decision has been taken to start a project, the project is supported by a
start-up policy.

« During the execution phase, the project is monitored, by means of tests, to check
the quality.

How does one ensure that an it project actually applies the policy?

After the decision on how fo react to developments has been taken, the necessary
changes are determined and it projects are initiated. When a project is in the start-up
phase, an exfract can be made from the overall policy, concerning the aspects that are
applicable given the goal of the project: methods, tools, test strategy, etc. In fact, a
quality and test plan can be drawn up in conjunction with the project plan. This ensures
that project scope, budget and time take sufficient quality and testing efforts into
account.

How is a quality policy related to testing?

A quality policy contains measures to check and show the actual quality of anything
subjected to the policy. Testing is one of the measures. Testing is an excellent measure to
show the actual quality. In TMap, the test strategy defines how testing is addressed and is
included in a master test plan. The so-called Generic Test Agreements (GTAS) resemble a

33



master fest plan and sometimes even replace it. A test policy supersedes GTAs that can be
related to specific outsourcing situations. A quality policy indicates how testing is used as a
means to measure and demonstrate quality.

Quality Policy

Test Policy

Generic Test Agreements

Master Test Plan

Test Strategy

Figure 8. Quality Policy Relation to Test

Differentiating factors in the difference between success and failure when setting up a
quality policy may relate to factors such as commitment, knowledge and expertise fo
guide improvement, the scope of the desired improvement, and adaptation to the
corporate culture. To set up a quality strategy, it is important to apply the element of
People, including culture and teambuilding. Any improvement (change) takes time to
implement and stabilize as accepted practice. Improvements that change the culture
take longer, as they have to overcome greater resistance to change. It is easier and often
more effective to work within the existing cultural boundaries and to make small
improvements (that is Kaizen) than making major changes in one 'big bang'. On the other
hand, a 'big bang change' works best when an enterprise faces a crisis and needs to
make major changes in order to survive. A well-defined quality policy will take all these
factors info account.

34



2.16 Building Block 16: Using test tools

There are lots of different types of test tools, each with its own purpose. We can classify test
tools by stating the festing activities they support:

lest Control

Quality Progress
Reporting Reporting

Code Testware Defect Task
Coverage Management  Management  Management

Test Execution

Security Test

Automated Automated § Performance

Design Scan Unit Test Functional Test lest

Test Environment

Test Data Test Environment Service
Management Management Wirtualization

Figure 9. Test Tool Classification

This does not mean that these individual activities are supported by a single test tool. Most
test management tools actually feature a combination of testware management, defect
management and reporting capabilities for example.

The use of any of these tools is aimed to produce an effect. It's useful to distinguish primary
and derived effects. Test execution tools accelerate test execution, so the primary effect is
saving time. There is a choice in the derived effects: either reducing test execution time,
increasing coverage in the same test execution time, or increasing the number of times
the tests are executed. The exception in this category of test tools is a performance test
tool, whose primary effect is the ability to execute a performance test; the derived effect
is insight in performance and stability.

The other types of test tools have different effects. Test control tools have the primary
effects of quality and progress control, test design tools save fime, and test environment
tools enable control over the preconditions to execute tests.

The primary and derived effects of the most commonly used types of test tools are given
below. Multiple derived effects means a choice has to be made which effects will be
achieved.

35



Type of tool Supported activity Primary effect Derived effect

e Testware management Control over test products Control over quality
» Defect management
= Quality reporting

= Progress reporting

Code coverage Insight in test coverage Control aver quality
on code level

Automated test design | Saving time » Reduce test design time
= Increase coverage for test
execution

Static code analysis Insight in code quality Contral over quality:
» Technical

Automated unit tetst Saving time » Increase coverage
= Test more often

Automated functional test Saving time Reduce test execution time
 Increase coverage
o Test more often

Perfarmance test Executing load and C9ntr0| over quality:
stress test = Performance
= Stability

Test data management | Have the right test data within © »Reduce test execution time
the constraints of privacy legis- = e Increase coverage for
|lation/cost for test environments  test execution

Service virtualization Reduce dependency of « Test earlier
atio availability service = Test in parallel
tool  Test always

Figure 10. Type of tools, application and impact in the short and long term.

Cost reduction is always a derived effect. The remarkable thing is that the main financial
benefits of using test tools is not within the test process itself: reducing test fime benefits the
business by adding business value earlier, improving quality benefits operations by
reducing the number of incidents, and finding defects earlier benefits development by
decreasing the costs for fixing them.

The effects of individual types of test tools can be increased by combining or integrating
them. And even more benefit can be gained by combining or integrating them with other
tools used in the application life cycle, such as tools used in the development process for
requirements management, system design, development or deployment, and tools used
in the operations process for change and issue management.

2.17 Building Block 17: Quality-driven characteristics

Using the four basic elements, leading to Confidence, the fifth element, will create an
approach that focuses on product quality: sometimes called 'fit for purpose' and
sometimes 'fitness for use'. That is why this approach is called 'quality-driven'. It can be
integrated in all kinds of development or project methods, frameworks or approaches.
Even beftter: it will only be successful when integrated, since Integrate is a key element and
it cannot work as a stand-alone process.

36



The quality-driven approach, based on the elements, has certain characteristics that are
more or less fulfilled by applying the approach, depending on the approach with which it
infegrates, because the elements may be applied somewhat differently. Some
characteristics are directly related to an element, some follow from combining elements.
Many characteristics are somehow linked. The characteristics marked with an arrow (>)
are essential to create Confidence.

The characteristics concerning the testing are especially mentioned.

The order of the list does not necessarily mean any ranking in importance, nor is the list
necessarily complete.

Characteristics of a quality-driven approach:

> Only features that meet the predefined quality standard are released.
. Direct involvement of users and their management (business driven).
. Test in all stages, start as early as possible.

. Tests are automated where possible and useful, in order to test better, more, and
more often.

. Testing at the end is only fo demonstrate value, a working solution.

. The role of test professionals evolves: integrated with other disciplines and helping
them in all phases, stages and activities, using their test expertise.

> Quality is everybody's concemn.

. Tests are used to find faults.

> Quality is built into the process.

> Continuous improvement of the process is built in.

. The people involved are mandated to decide about their own work process to
improve quality.

. Every deviation, defect, imperfection is a trigger to improve.
. Open culture where people can trust each other.
> Mindset: an attitude to honor and live all of the above aspects.

. A quadlity coordinator has a mandate to intervene on quality issues and constantly
pay attention to quality, using tests to monitor and check.

. Support from highest level of management.

As an example on how it can work out in practice, the brief action plan of Seabiscuit is
shown, as made by Neil, Hal and Francine and used in the story:

Instruments, measures and actions to achieve this: Action by

Visit to a factory to inspire. H (M)

37



Overall project management. H

Hire team leaders, experienced in a quality-driven method to H
coach and build feam.

Agile method (short-cycled, iterative, using demo, retro and H
definition-of-done).

Team retrospectives to improve the process for every deviation H
from quality standard

Training and teambuilding. H
Coaching of Hal by Mr. Mikkel on the quality-driven approach. M
Select people carefully to build teams. H (M)

Involving Ann as user representative, participating on a daily basis. N

Cross-team retros by Neil (if necessary attending, stimulating feam N
retrospectives).

Constant attention to quality aspects, (pioneering, communicating, N
stimulating)

Monitoring on quality aspects (dashboard). N

Adequate set of quality criteria, used as the standard for defined N

quality level.
Use tests to monitor, check the actual state of quality. N
Use of test tools to test more, better and more often. N

z

Pick up and secure cross-project issues, improvements, experiences
(PDCA), and build a long-term policy for ZBO (test expertise, tools,
quality-driven approach, etc.)

Position of Neil independent of the project, acting on behalf of N
Owen, supporting Ann and Hal, overseeing. Mandated by Rupert
to intfervene on quality issues (assignment).

Responsibility for each point is indicated by initial: H = Hal, N = Neil, M = Mr. Mikkel.

Guarantees:

« High quality is guaranteed by the establishment of quality criteria, which must be
met by product features before release.

« Assolution with working features can be released every cycle due to the
timeboxing structure.

* Quality will rise and costs will decrease over time as a result of contfinuous
improvements.

+ The mostimportant features will work at a final deadline after multiple cycles
because features are reprioritized every timebox.

38



2.18 Building Block 18: Integrated Test Organization

How do you organize testing? Many people have struggled. Many different solutions have
been found. However there was one basic division of responsibilities. Traditionally we see
the 'project organization', 'line organization' and 'staff organization'.

Briefly summarized, the project organization focuses on achieving well-defined one-off
goals, the line organization focuses on long-term goals such as maintenance (terms such
as 'test factory' or 'test line' are used in this context), the staff organization basically
supports people in the project and line organization with specialist expertise such as test
tooling (this is sometimes known as a Test Expertise Center).

Figure 11. The traditional division of responsibilities in a test organization

In fraditional I1, we could see unit festing being organized within projects. System testing
would be done by independent testing tfeams, as a line organization (including an
extensive regression test) and the acceptance testing was done by the business
representatives that were supported by the testing staff organization.

Nowadays the frend is towards integrating all activities. What does this mean for the test
organization?

The modern approach to solving information-technology challenges is to have small self-
contained and empowered teams. The ultimate form, known as the 'whole-team
approach' or 'DevOps', integrates all design, development, maintenance and operations
tasks. So the distinction between project organization and line organization no longer
exists. They have blended together.

The benefits of this infegrated organization are enhanced communication and
collaboration within the team, an elevation of the various skill sets within the team to the
benefit of the project, making quality a shared responsibility.

This will work very well in small organizations with only a few teams: all expertise that can
effectively support the business needs is available within the teams. But what does this
mean for larger organizations?

If your organization has a large number of integrated teams you will come across two
challenges:

1. How do the teams effectively exchange necessary information?

2. How do the teams gef skills and expertise they don't have within their team?

39



Re 1) Small empowered teams may tend to isolate themselves, as that helps avoid
distraction so that they can keep up their velocity. However, some information must be
exchanged to maintain alignment in the results of the teams. In addifion, the long-term
maintainability of the information systems in a larger organization will benefit from using
standards that need fo be agreed amongst the teams.

Re 2) In a small empowered team there will typically be one or two people who are
particularly skilled in a specific area, such as one business analyst, one systems designer,
two programmers, an operations person and a tester, for example. On the subject of
festing, the team members will have general knowledge and skills, and the tester in the
team will have more in-depth knowledge and skills. However, one single person can't be
an expert at all areas of the festing profession, so how does the team get the missing
knowledge and skills2

In a small organizations (let's say with 3 feams) everybody still knows each other and, on
an informal basis, they will be able fo manage the challenges described above.

But in larger organizations both challenges call for support. The 'staff organization'is
needed to properly organize this support. The staff organization consists of experts in
various fields who are able to support multiple teams in the organization. For example, the
staff organization will be called upon to support the teams when setting up an automated
regression test, or to do the overall maintenance and support of test management tools.
Also the staff organization will create the guidelines and standards that the teams ask for
(bear in mind that the staff organization should not just create standards for the sake of
standardization, they only do this on request of the teams to solve impediments).

Project

Figure 12. Testing in intfegrated and empowered teams, supported by the staff
organization.

Summarizing, the main reason for having a staff organization is that specific specialist
knowledge and skills are too scarce within the teams, so they will have to be added from
outside the teams. Thus you will get the optimal benefits of infegrated and empowered
teams.

Integrate is one of the elements introduced in this book. The infegrated organization is the
answer to foday's challenges. In this way, the assurance of adequate quality is embedded
in the activities of the teams. And whenever the team itself lacks certain skills or expertise,
the staff organization is available to assist.

40



2.19 Building Block 19: Implementing test tools

To achieve the desired effects of using a test tool, we need to implement it. After
implementation, the primary effect can be reached straightaway, the derived effects
take longer.

How fo implement a test tool varies per type of test tool, but there are generic aspects
that the implementation of any type of test fool should address.

There is more to it than just installing the tool, as is visualized in the test tool implementation
model (see figure 13).

There is always a relationship between the test tool and the test object. Most types of test
tools have a strong relationship with the technology of the fest object. This technology
determines if a test tool can be used and if so: the amount of effort required to implement
and maintain a usable solution. Another factor is the number of releases of the test object:
this determines the frequency of use of the test tool but also the frequency of having to
maintain if.

Setting goals in terms of scope, results and fimeframes is an
obvious best practice, but dealing with expectations is
equally important: they can differ substantially from what will
actually be achieved.

The result is that the implementation of a test fool is wedged
between the Goals & Expectations and the Test Object &
Releases.

Releoses

The implementation starts with getting commitment and
dealing with preconditions. The technical implementation
deals with installing and setting up the test tool to create a
usable and maintainable solution. A good technical
implementation is not enough, people remain the critical
success factor, and equipping personnel with the right
knowledge and skills to use and maintain the test tool is
essential. The implementation is truly successful when using
the test tool (and, of course, the necessary activities to be
able to keep using it) has become an integral part of the
testing process (or even better: the development process). In
other words, when using the test tool has become self-
evident.

0
[ =
5]

=
o
&
@
2

2

m
o
(=]

0

Test Object

Afterimplementation we can use the test tool, but we have
m to keep adapting to changes to keep achieving the intended

effects. The most obvious changes are changes in the test
object that require maintenance in the test tool, but changes
in organization or processes need adjustment too.
Conftinuously looking for improvements on all levels helps us
increase the effect of using test tools.

Desired effects

Figure 13. Test tool Implementation Model.

4]



Most test tool implementations are initiated on the operational level, giving a bottom-up
approach that focuses on the use of a single type of test tool for testing a single
application. This is an effective approach, mostly because commitment is more easily
achieved and goals are more easily met due to of the operation level of the goals. But
embedding the use of test tools in the application lifecycle (the Vision & Policies layer) is
more difficult and is often forgotten.

A top-down approach starts with strategic choices that reflect the goals of the entire
organization, deals with all types of test fools and integrations, and governs the individual
implementations. Although top-down implementation takes longer because of the larger
scope, it maximizes the effects of using test tools by integrating them into the entire
application lifecycle.

2.20 Building Block 20: Reviewing requirements

The goal of software development is well-functioning (qualitative) end-products and
services. Along the way, whether it be waterfall or Agile development, many work (or
interim) products are created to get to that goal: business case, requirements, plans,
designs, etc. If those work products don't have the right quality, they will never lead to the
desired outcome.

Assessing those work products can reveal potentially expensive defects at an early stage.
The sooner a defect is found, the simpler and cheaper it can be reworked. The goal
should be to detect defects at the source (see the "Root cause analysis and Metrics”
building block). Besides cost and lead-time reduction, another advantage is that the gap
between the expected and realized result narrows. Assessing work products is referred to
by many names such as evaluation, 'reviewing, 'examination’, and 'inspection'.

Not only are defects found earlier, some defects are also found more easily than in actual
testing: defects like deviations from standards, unclear and inconsistent defects,
insufficient maintainability etc.

Work products can be compared with:
e The preceding work product
« Criteria from the succeeding phase (established in checklists)
«  Other work products at the same level
e Agreed products standards
» The expectations of the client.

There are various review techniques, varying in purpose, formality responsibilities and
procedure. Since not every work product needs to be assessed with the same effort,
different techniques can be chosen per work product. For more information, see TMap
NEXT, 2006.

Reviewing is not a difficult process to set up, but in practice the process can become
mired in practical execution problems. Here is a (non-exhaustive) list of thing to be done or
avoided to overcome this:

* Go prepared into review meetings

* Have structured review meetings

« Don't have more than 6 people at a meeting

42



« Don't have people who are too dominant (functions /roles) at a meeting

» Criticize the product, not the creator

* Register defects properly and analyze root causes (and metrics)

» Take care of support

« Divide large documents to prevent only the first 20 pages being properly assessed
* Vary in assessors to overcome relaxation of attention.

In the course of time the intensity of reviewing may decline, for lessons learned ought to
have resulted in fewer major defects.

In more detail

The importance of good requirements to a software project cannot be understated.
According to analysts, as many as 71% of software projects that fail do so because of the
quality of the business requirements. Requirements mark the boundary between what we
would like to have and what we are going to build. Essentially they state the need of the
business owner of the project. If there are errors or ambiguities there, then the whole
project is at risk.

There are many shapes and forms of requirements, but the important thing is that
everyone in a project that handles requirements should ensure that he or she understands
what is meant by them. There are many ways fo make sure of this. At very least, everyone
involved should ask himself the following questions:

+ Consistency: Are there requirements that confradict each other in some way?2

+ Completeness: Do the requirements describe all the aftributes of the system to be
implemented?

« Verifiability: Is it possible to check if a requirement has been built correctly?

« Traceability: Is it possible to check the status of this requirement in all the stages of
software development?

«  Atomic: Is this requirement as simple as possible (but not simpler)2 An easy check
for this is if the requirement contains words like 'and’, ‘or' and but'.

» Structure: Do all the requirements have the same structure? There are many ways
to capture requirement (think of user stories, requirements documents, etc.) but the
most important thing is fo be as consistent as possible in the way requirements are
captured.

« Feasibility: Can the requirement be achieved by the organization given its current
state of fime, budget and capabilities?

+ Understandability: Can everyone involved in the project understand what is meant
by the requiremente

There are many more checks that one can do to monitor the quality of the requirements.
Forinstance, it is often helpful to do a check for "weak words". These are words that, when
they occur within a requirement, are often part of an ambiguity in the requirements, or
signal that a requirement might be unclear. A list of 'weak words' can be found on
tmap.net.

43



Chapter 3 Website

3.1 Introduction

Chapter 3 of this workbook will focus on test design. The source that appears in this section
is information from the TMap Suite website (www.tmap.net) on this topic.

Due to the changing nature of the website we have included the information for
certification in the workbook. This way the workbook remains the source for the
certification, but all topics that are discussed in the workbook, are also discussed online.

3.1.1 Reading Guide

In this chapter a number of topics are covered. In the first two sections the importance of
test design is discussed and some key concepts around test design are explained. In
sections 3.3 up to and including 3.6 a number of groups of different coverage types are
illustrated.

In the final section 3.7, 8 test design tfechniques are elaborated on.

3.1.2 Why test design?

One of the most important goals of testing is a clear advise on quality and risk in such a
way that all the parties involved gain confidence in the product. To be able to do this, a
tester has to gather information on system behavior. One of the main tools in gathering
information is the executing of test cases. The results of those cases give information on the
system behavior. The main questions are: Which test cases? How many2 And how do we
get those cases? In answering those questions test design is indispensible.

Designing the right set of test cases is the essential link between the test strategy and the
implementation of the fest strategy - the tests that are executed.

This takes place in the context 'of test assignment to test cases' (also see Workbook:
section 4.3 “Planning Phase” or on tmap.net: Test design or section 6.2 “Planning Phase” of
TMap NEXT®.)

See figure 14 for the link between the relevant terms in test design:

. Risk
[Asmgnmen’r ]::)[ analysis ]:{)[Tests‘rrotegy J

e " TTTTTTTTIImmsmsosmsosooosooooes Designing test
cases

s

: Coverage ‘
Approach ]ﬁL ‘:/ypeg
[ Test basis % \ , -[Test cases J
Test design
technique

“..._Combination

Figure 14. From assignment fo test cases.

44




This is all about making choices. The outline of that is (see figure 14):

It is never possible to test ‘everything’. For example, because of the constraints in ferms
of time and costs that have been given in the assignment formulation. But also
because what that 'everything' now really means can rarely be defined
unambiguously (for example: all the lines of code, or any combination of data, or any
quality characteristic or all possible paths in the process or any faults or ... or ...2). There
are all sorts of choices that must therefore be made.

The more important an item is, the more thoroughly it must be tested. The importance
(choice) of items, such as system parts, is determined by performing a risk analysis (for
instance PRA of PRBA).

In the test strategy an overview is made of the whole test and how the testing effort is
divided between different test varieties (choices) to cover the mentioned risks most
adequately. The characteristics of the test object that are under test and the
thoroughness with which these must be tested together determine the coverage over
the test.

The test strategy has to be translated to test cases to substantiate the test strategy. In
many cases, the substantiation of the test strategy has to be demonstrated (this can,
for example, be one of the preconditions in the assignment).

How can we design the test case (choice)? This depends on a couple of factors: :

« The agreed coverage (the characteristics that must be fested and the
thoroughness with which these must be tested)

« The available test basis - information on system behavior on which the test cases
are based

« The way the software development process is organized (for instance waterfall vs.
agile)

+ The knowledge and experience of the people involved

+ The fime and budget available to execute the tests

Based on these factors, a choices are made — not in a prescribed order — with regards
to test approach(es), in coverage types and test design techniques.

The selection order of Approach(es) Coverage Type(s) and Test Design Technique(s) is not fixed
in advance.

For example:
In an Agile environment the Experience-based approach could be chosen first and within that

approach Exploratory Testing. In carrying out ET the most appropriate coverage types
(Coverage-based approach) are then applied.

In another situation, for example, the Process Cycle Test is immediately chosen on the basis of
the required coverage and the available test basis, within which the test depth level is then
determined. With this the approach (coverage-based) has automatically been determined.

In yet another situation a number of coverage types is first selected, wherein the thus obtained
test situations are combined fo test cases. The specific name of the test design technique is no
longer relevant (perhaps an entirely new TOT). In this case the approach is also set
automatically: coverage based.

45




Tip: Preferably use a mix of coverage and experience-based approaches.

« This will lead to a set of test cases that will fulfill the test strategy in a way that is needed
to complete the assignment.

3.1.3 The Benefits of Test Design According to the TMap Suite

Thorough test design is important. In addition to the above, a number of arguments for this
can be mentioned:

* Because test design, at least the coverage-based approach (see Building Block Test
Approaches), is aimed at reaching a certain coverage for finding certain types of
faults (e.g. interfaces, process, input checks or the processing), such faults will be
detected in an effective manner.

« The test design, in most cases, aims to achieve the required coverage with the least
possible test cases.

« The tests are reproducible, because the order and content of the test execution have
been described in detail.

« The standardized approach makes the test process independent of the person who
specifies the test cases and executes them.

« The standardized method makes the test specifications transferable and maintainable.

+ The testing process is easier to plan and manage, as test design and execution can be
divided into well-defined blocks.

3.2 Framework and Importance of Testing

3.2.1 Infroduction

In tfest design it is all about realizing a set of test cases that demonstrates in the agreed
extent the agreed coverage.

Because of this we firstly discuss what a test case actually is.

3.2.1.1 What is a test case?

A test case is used to examine whether the system displays the desired behaviour under
specific circumstances. It must therefore contain all of the ingredients to cause that system
behaviour and determine whether or not it is correct. A well-known way to describe
system behaviour is ‘Input — Processing — Output’.

A test case consists of a description of the starfing point (also known as inifial situation), the
test action and the predicted result::

» Starting point (initial situation)
This covers everything that is needed to prepare the system for receiving the required
input. This includes not only the data that are needed for the processing, but also the
condition in which the system and its environment must be. For instance, one might
think of setting a specific system date, or running specific week and month batches
that bring the system to a specific status.

» Actions
This means all of the activities that must be executed to activate the system to the
processing. It might be a simple command (‘Run ...") or entering specific data on a

46



screen. But it can also be a complex sequence of entering parameters, activating a
specific function, manipulating other data, starting up another function, etc..

* Predicted result
This covers all of the results that the tester must check to establish whether the system
behaviour conforms to the expectations. Often, predicted result is incorrectly thought
to be limited to the output that appears on screen oris stored in databases. But the
system can also produce output that is transmitted to other systems or peripheral
equipment. Furthermore, more than just output data may have to be checked to
establish that the system is working correctly. Forinstance: ‘How quickly should the
output appeare’, ‘What is the maximum allowed memory load and is it released
afterwards?’, or ‘Should the system produce interim signals or messages, such as the
hourglass or beeps?’

See the figure 15 for the generic structure of a test case, in relation fo the system'’s
behaviour under test.

Starting point

Testcase | Action (System)

behaviour

ol 18
g
= &

Predicted result

Figure 15. Generic structure of a test case, in relation to the system’s behaviour under test.

In other words, executing a test case roughly goes through the following steps: ‘Prepare
this — Do this — Check that.’

Contrary to a test situation — which addresses an isolated aspect — a test case is a
complete unit that can be executed as a separate test.

3.2.1.2 Key Concepts in Test Design

The key concepfts in test design are:

« Coverage
» Coverage Types
e Thoroughness

e Test Approach
« Test Design Technigue

These concepts and their interrelationships are explained in sections 3.2.3 t0 3.2.5. In
section 3.2.2 is first explained in detail of which generic steps test design consists and how
coverage types and test design techniques are related.

47



3.2.2 The Generic Test Design Steps

The creation of test cases follows the following five generic steps:

Identifying test situations
Creating logical test cases
Creating physical test cases
Establishing the starting point
Creating test script.

o=

These five generic steps are independent of the chosen test design technique and are
always applicable. In some cases (because of the chosen test design technique or other
circumstances) steps can be skipped or merged.

The relationship between the concepts is shown in figure 16:

Test situation

Test case

Demonstfrating that the agreed
coverage is achieved

Logical test case

Physical test case

Concretely elaborating test cases
to prepare for fest execution

Test script

Figure 16. Relations between the concepts test situations — test cases — test scripts.

The relationship between the concepts is shown in the figure above and can be
summarized as follows:

« Every test situation occurs in at least 1 test case

* Alogical test case covers 1 or more test situations

* Every logical test case is worked out concretely into exactly 1 physical test case
* Every physical test case occurs in 1 test scripft.

The figure also shows the distinction between the logical and physical parts of the test
design:

48



« The logical test design consists of the test situations and the logical test cases. This is the
part that demonstrates that the required coverage is achieved, thereby complying
with the test strategy.

» The physical test design consists of the concretely created physical test cases, laid
down in test scripts. This guarantees a thorough preparation of the ‘execution’ of test
cases. The physical creation of test cases therefore adds nothing to the thoroughness
of the fest.

The Concepts Explained
» Step 1 of test design is identifying test situations.

A test situation is:

An isolated occurrence (possibility) that must be tested.

In a coverage-based approach the test situations, by definition, are obtained by applying
one or more coverage types. In an experience-based approach testing situations are
based on skill, intuition and experience of the tester.

» Insteps 2 and 3 the test cases are determined.

With a test case:

it is examined whether the system displays the desired behavior under specific
circumstances (the test situations).

A test case is from "beginning” (input) to 'end’ (oufput) and contains one or more test
situations.

» Step 2 entails that the test situations are combined to form logical test cases, so that
each test situation is covered by at least one logical test case.

A logical test case:

describes in logical terms the circumstances in which the system behavior is
investigated, by indicating which test situations are covered by the test case

In other words, what will be tested, indicated in abstract terms.

« Step 3involves the logical test cases being sufficiently developed specifically to
actually perform the test cases. Choices are made regarding physical values.

A physical test case:

is the concrete elaboration of a logical test case, in which choices are made for
the values of all the input and also for the environmental settings

Physical test cases usually contain a concrete description of:

 Initial situation
0] All that is required to be able to receive input from the system, such as:
» Database with necessary data
» Environment parameters, e.g. system date
» State of the system
« Action
0] All activities required to activate system behavior :
= Straightforward: run batch program or entering data
=  Complex: a great many actions
« Result Prediction

o All results that need to be checked such as:

49



= Correct message on screen
= Data base changed yes/no

« Step 4 includes determining the starting point, that is all that is needed to execute the
test cases. The starting point for test design includes the initial situations of the individual
test cases from the test design, supplemented with everything else that is needed fo be
able to carry out the set of test cases. The starting point is prepared before the test
execution.

One step further is that the starting points for different tests may also show (big) overlap.
For that reason, it often involves one or more central starting points which are for
multiple tests of the application.

« Step 5is the preparation of the test script. In this document the test actions and checks
of the physical test cases have been described in the most optimal test execution
order. These test cases must not be able to disturb each other. The test script as such is
the roadmap for the test execution and also offers the possibility for monitoring
progress. The physical test cases and starting point naturally form the basis for
manufacturing the test scripft.

The general contents of a scriptis as follows:

¢ Unique identfifier, consisting of:

o) version;
o) author;
o) test basis including version.

e Preparing the starting point
For example by setting the system date, restoring a certain back-up and adding
certain test data

e Test actions and —checks
The physical test cases in a suitable sequence for execution, with for each test
case, the required inifial situation, action and outcome monitoring. When a good
starting point is set up, nothing needs to be done anymore for the inifial situation.

e Restoring environment
Ensure that the results of the executed test, if necessary, are restored again so that
other testers experience no disruption (think also for example, of restoring the
system date).

3.2.3 Coverage, coverage types and test intensity

3.2.3.1 Coverage

The choices in your test strategy on WHAT to test indicate that you want to cover certain
aspects of the test object. The objective of an effective test strategy is therefore to realize
the best achievable coverage at the right place. Coverage has everything to do with the
wish to find the most possible defects with the fewest possible test cases.

But what is coverage? Coverage is very subjective. We cannot talk about the coverage.
What does an executive or other stakeholder mean when he/she asks you what the
coverage of the test was2 What information does he/she need or want2 Possibly he/she
wants fo know how thorough some aspects of the test object have been covered. Maybe
he/she want to know how many of all possible defects have actually been found by the
tests.

50



A key word here is Coverage. A definition for coverage is hard to give. It basically deals
with aspects of the test object that you would like to assess and the thoroughness with
which you do that.

More important is the question if we are able to achieve 100% coverage. Well, we can
never be certain that all defects have been found or even that 60% of all defects has
been found. After all, we do not know how many defects there actually are. Furthermore
we don’t know how accurate and complete the information was on which we based our
test cases. Also if the tests we executed were based on a test strategy (and product risk
analysis) we can never be sure whether our stakeholders made the right choices on what
to cover. Testing everything is simply impossible, because it is impossible to define what
‘everything’ means.

Although coverage is hard to define, it has a relation with the following two term:s:
+ The aspects of the test objects (e.g. quality characteristics) that must be tested
and

+ Coverage thoroughness applied to each of those parts.

3.2.3.2 Coverage types

The definition of a coverage type is:

‘ the form in which test situations are deducible from the test basis.

This concerns:

« the options that need to be tested
¢ and the method of working fo identify those options.

A coverage type focuses on achieving a specific coverage to detect specific types of
defect (e.g. in the interfaces, the input checks or the processing), such defects are
detected more effectively then by specifying ad hoc test cases. One coverage type
could only be called ‘better’ with any practical use if it would find at least all of the
defects found by the other coverage type plus some additional defects.

Summarized (see figure 17):

. It is not possible to test everything within the confines of the preconditions of time and
costs defined in the assignment. Choices will have to be made as to the lengths one
wishes to go to in testing.

. A test strategy is used to create an overview of what will be tested and how
thorough, such that the aspects to be tested are covered as adequately as possible.

. The decisions concerning thorough and less thorough testing are translated to
concrete statements about the targeted coverage.

. Depending on the available test basis, among other things, appropriate coverage
types are selected to achieve said coverage

51



B Coverage type Test situations
Test J
basis Y Y
AN § AN
Test design T
technique est cases

Figure 17. Summary of deriving test cases.

3.2.3.3 Coverage thoroughness

In the test strategy is decided what fest intensity is to be achieved in the fest. Along with
the aspects of the test object to be assessed this indicates what kind of coverage is to be
achieved and with what thoroughness.

This means that executives and other stakeholder most likely expect information about the
thoroughness of your test. But what do they mean? There is no unambiguous definition for
test intensity. It is about aspects such as:

« How thorough was the chosen coverage type?
+  Were multiple coverage types applied?
+ How high was the variation of thoroughness within a specific coverage type?

Itis not a question of 'better'!

So, although a fascinating subject, it's also a complex matter. There is no black and white
here. However, we can state that testing everything is impossible. How more thorough is a
certain coverage type compared to another (e.g. pairwise testing versus modified
condition/decision testing)2 How more thorough is one variation within a coverage type
compared with another variation within that same coverage type (e.g. modified
condition/decision testing versus modified condition coverage)? How many additional
defects are to be found?

3.2.34 Coverage groups

Coverage types can be divided into four coverage groups:

Process: Processes can be identified at several levels. There are algorithms of
control flows, business processes. Coverage types like paths, statement coverage,
and state transitions can be used to test (variations in) these processes.

Conditions: With almost every system, there are decision points consisting of
condifions, where the system behaviour can go in different directions, depending
on the outcome of such a decision point. Variations of these conditions and their
outcomes can be tested using coverage types like decision coverage, modified
condifion/ decision coverage, and multiple condition coverage.

Data: Data is created and ends when it is removed. In between, the data is used
by updating it or consulting it. This lifecycle of data can be tested, but also
combinations of input data, as well as the attributes of input or output data. Some
coverage types here are Boundary values, CRUD, Data flows, and Syntax.

52



Appearance: How a system operates, how it performs, what it's appearance
should be, is often described in non-functional requirements. Within this group we
find coverage types like operational and load profiles, and presentation.

3.23.5

Coverage types per coverage group

The table below gives a brief description of each coverage type per group.

In the next section an indication is given how the coverage thoroughness can be varied

within several coverage types.

GROUP

Process

Conditions

Data

COVERAGE

TYPE

Control flow

Rare events

Right paths/
fault paths

State
fransitions

Decision
points

Semantics

Boundary
values

DESCRIPTION

Testing the program structure.

Coverage of the variations in the process in terms of
combinations of paths. A scheme of decision points
and paths is required as a test basis.

Addressing events that happen very infrequently

Checking both the valid and invalid situations in
every defined error situation. An invalid situation
(faulty control steps in the process or algorithm that
precede the processing) should lead to correct error
handling, while a valid situation should be accepted
by the system without error handling.

Verification of relationships between events, actions,
activities, states and state fransitions.

Coverage of the various possibilities within a decision
point with the purpose of arriving at the outcomes of
TRUE and FALSE

Validation relationships between data.

A boundary value determines the transfer from one
equivalence class to the other. Boundary value
analysis tests the boundary value itself plus the value

53



GROUP

COVERAGE
TYPE

Data

combinations

Data flows

Domain
testing

Equivalence
classes

Integrity rules

Right paths/
fault paths

DESCRIPTION

directly above it and directly below it.

Coverage of all the basic operations (Create, Read,
Update, Delete) on all the entities.

Testing of combinations of parameter values. The
basis are Equivalence classes.

Verifying information of a data flow, which runs from
actor to actor, from input to output.

Coverage of a small number of values from a nearly
infinite group of candidate values. Domain
knowledge plays a very critical role while testing
domain-specific work.

The value range of a parameter is divided into
classes in which different system behaviour takes
place. The system is tested with af least 1 value from
each claoss.

Checking the preconditions under which certain
CRUD processes are or are not permitted.

Checking both the valid and invalid situations in
every defined error situation. An invalid situation
(certain values or combinations of values defined
that are not permitted for the relevant functionality)
should lead to correct error handling, while a valid
situation should be accepted by the system without
error handling.

54



COVERAGE

GROUP TYPE DESCRIPTION
Syntax Validation of aftributes of input or output data.
Heuristics Evaluation of (a number of) usability principles.

Simulation of a redlistic loading of the system in terms

Load profiles .
of volume of users and/or fransactions.

Appearance
Operational Simulation of the realistic use of the system, by
W carrying out a statistically responsible sequence of
RIofies transactions.
Presentation Testing the layout of input (screens) and output (lists,
— reports).

3.2.3.6 Variations in coverage types

The decision to test more ‘thoroughly’ can be formalized basically in 3 ways by varying in
coverage types:

e acoverage type thatis more thorough;

* multiple coverage types;

« a more thorough approach within a specific coverage type.

For some coverage types, it is possible to vary the coverage thoroughness within the

coverage type.
The table below gives several examples.

COVERAGE TYPE VARIATION

« Statement coverage
» Decision coverage (branch testing/ arc

Confrol flow .
testing)
e Paths (see Paths)
Paths Test depth level N
State transitions ’ O_SW!TCh
1-switch

55



COVERAGE TYPE VARIATION

e 2-swifch

* Condition coverage

« Decision coverage

* Condition/ decision coverage

* Modified condition/ decision coverage
e Mulliple condition coverage

* Cause Effect Graph

+ Pairwise testing

Decision points

Semantics See decision points and equivalence classes

e Light (boundary value + one value)
Boundary values ¢ Normal (boundary value + two values)

e Right paths/Fault paths
* No data pairs
¢« One or some data pairs

Data
« N-wise (extension of pairwise)
« All possible combinations
Integrity rules See decision points and CRUD
Syntax See individual test situations
3.2.4 Test approaches

In addition to what has already been shown in Section 2.9 (Test Approaches) we discuss
some more topics in this section.

A test approach is:

The test approach is the approach that someone takes when creating test cases.

There are roughly two approaches to creating test cases:

1. Experience-based
2. Coverage-based

56



e Preferably use a mix of coverage and experience-based approaches.

+ Coverage based approach:
« Testsituations are deduced from the test basis with the aid of coverage types
+ Focused on effective and efficient collection of information about quality and risks
« Aimed af provably achieving the coverage that has been agreed upon in the test
strategy.

+ Experience-based approach:

« Allows the tester to design / think of test cases prior to and / or during test
execution

» Based on skills, intuition and experience of the tester

« Also aimed at the realization of the test strategy, but less certainty about the
actual coverage

« Coverage more difficult to demonstrate

« Always a valuable additfion to coverage-based approach.

3.25 Test design techniques

A test design technique is:

A standard method to derive test cases from a certain test basis to achieve a
certain coverage.

The importance of the use of test design techniques is represented by the following
arguments:

» The tests are reproducible, because the order and content of the test execution have
been described in detail.

« Astandard way of working creates independence of the test design and the person
designing the tests.

» The standard way of working makes sure that the test specification is tfransferable and
maintainable.

« The testing process is easier to plan and manage, because the processes of test
specification and execution can be divided into well-defined blocks.

In the ideal situation we would have the certainty, thanks to the test that the system
exhibits the correct or desired behavior under all circumstances. In reality, not alll
condifions will be tested, but only a subset that is a direct result of the decisions and
choices in the test design.

The generic steps of test design, and thus of the applying of test design techniques are
described in section 3.2.2.

3.2.5.1 Relationship between coverage type and test design
techniques

E A fest design tfechnique is used to derive the necessary test cases that achieve the
required coverage from a specific test basis. The first step of a test design technique is the
identification of test situations. The test situations are derived by applying coverage types.
A test design technique suggests the application of one of more coverage types, and
subsequently gives directions on how to turn the test situations derived by these coverage
types into test cases. Each test situation is covered by at least one test case.

57



The required coverage is expressed in the selected coverage types. Each coverage type
requires a specific type of information in the test basis, e.g. a structured flow chart with
paths and decision poinfs..

3.2.6 Selection of coverage types and test design techniques

There exist many coverage types and test design techniques. For the sake of simplicity and
practicality we will only highlight the most commonly used test design techniques and
hence the application of the underlying coverage types.

To give you a practical overview we highlight the most commonly used coverage types
and some test design techniques in which they can be applied.

GROUP TEST INTENSITY: TEST INTENSITY: TEST INTENSITY:
LIGHT AVERAGE THOROUGH
Multiple Condition
Coverage -
Modified Condition
Condition Decision Decision Coverage -
. Elementary
. Coverage- Elementary Comparison Test )
Condition Comparison Test
Elementary or or
Comparison Test
Condition decision coverage— . "
. Multiple Condition
Decision Table Test .
decision coverage -
Decision Table Test
One or some data o L N-wise or all
. Pairwise — Data Combination T
Data pairs -Data Test combinations — Data
es
Combination Test Combination Test
Statement . Paths test depth level 2
Decision coverage and .
coverage and — Algorithms Test and
Process Paths test depth
Paths test depth level 2 -
level 1 —Process Paths test depth level 3
Process Cycle Test
Cycle Test — Process Cycle Test

Note: The coverage group "Appearance” is not mentioned here. In cases where this
coverage group applies, the coverage type and test intensity are too dependent on the
specific situation and the result that the tester wants to achieve.

58



3.3 Coverage Types Process

3.3.1 Introduction

Processes can be identified at different levels. There are algorithms for control flows and
business processes. Coverage types in this group can be used to test (variations in) these

processes.

This group consists of the following coverage types:

e Paths (section 3.3.2)

« Control Flow (is not explained separately in this Workbook)
« Right paths/Fault paths (is not explained separately in this Workbook)

« State Transitions (is not explained separately in this Workbook)

* Rare Events (is not explained separately in this Workbook)

3.3.2 Paths
Characteristics
Approach Coverage based - process

Quality characteristic /
Test variety

Functional test
Suitability

o for work processes
Code structure
Security

Test Basis

Flow with paths and decision points

Description

The coverage of paths is applicable if the system behaviour is

described with the aid of decision points and paths. The figure

shows an example of this situation.

Charts of decision points and paths show, in a structured way, how
the process runs from start to end and what the various possibilities
in the course of the process are: At each decision point, the process
can go various ways, indicated by the various paths that continue
from the particular decision point. The conditions under which it
takes one path or another are described in the decision points

themselves.

The aim of the coverage type described here is to cover the

variations in the process run that are possible according to the
chart. The test situations (within coverage type Paths this is also
called path combinations) are described in this case by indicating

which paths in the chart should be followed consecutively.

Keep in mind that such charts with decision points and paths do not

necessarily have to be about the functionality of the system.
Security processes or work procedures in business processes can also be described with
such charts, which makes the basic technique described here applicable to other test

types.

59

5

—

1

A
B

<o

End

rt
2
1
6

N




The level of abstraction is irrelevant: coverage type paths is applicable to both detailed
level (code algorithm) as well as overall system or business process level, as long as the
information about the desired system behavior but was given in the structured form of
decision points and paths.

3.3.2.1 Light or thorough coverage: the test depth level

In the coverage of paths, various levels are possible. The more thorough the level, the
greater the probability of finding defects. This is explained below.

The most elementary form of path coverage only provides the guarantee that each path
has been travelled once. The test situations consist in this case of every individual path.
Going through the process from “Start” to “End”, covering only each individual path, will
finds all the faults that will always occur in a particular path. However, it is not for certain
that faults that only occur with a specific combination of process steps will be found in this
way. E.g. a particular fault may be present, which only occurs if path 2 is carried out
immediately after path 5.

In order to find this type of fault, testing has to be more thorough. The coverage
thoroughness is reflected in the concept of test depth level:

Definition

Test depth level N = the certainty that all the combinations of N consecutive paths are
covered.

The test depth level in principle runs from 1 to unlimited. The higher the test depth level, the
greater the certainty that even faults that occur in complex compositions of process steps
will be found. A higher test depth level implies a lower test depth level. In other words, a
higher test depth level will at any rate find all the faults that can be found with a lower test
depth level, plus possible additional faults.

Deriving the test situations for test depth level 1 is easy: every single path is a test situation.
In the example those are the paths 1 up to an including 7.

The basic technique for obtaining test depth level 2 is described below. Subsequently, it is
explained how higher test depth levels can be derived simply from test depth level 2.

3.3.2.2 Obtaining test situations with test depth level 2

Irespective of the test depth level, the starting point for this technique requires a test basis
that describes the system behaviour in terms of decision points and paths.

The following steps are then carried out:

1. Decision points & paths
Nominate the decision points in the process scheme (A, B, etc.) and number the
paths. Sum up, per decision point, the:
a. Incoming paths (“IN")
b. Outgoing paths (“OUT")

2. Path combinations
Working out all the combinations of “IN" and "OUT” at each decision point. With a
number of incoming P paths and outgoing Q paths, this leads to P times Q path
combinations.

60




When applied to the example:

Decision

Point IN ourt Test Situations (path combinations)

A 1.5 2,3 1-2; 1-3; 5-2; 5-3

B 2,3 4,5 2-4; 2-5; 3-4; 3-5

C 4 6.7 4-6; 4-7

3.3.23 Deriving test situations for higher test depth levels

For higher test depth levels, the following simple mechanism is used:

« Use the list of path combinations of the preceding test depth level as a basis
+ Extend each path combination by every possible subsequent step in the course of
the process.

It may be formulated as:
Test depth level (N+1) = Test depth level N + “1 step further in the course of the process”.

Test depth level 3 can be worked out as follows for our example:
From the scheme the following can be easily deduced:

« Path 1is the starting point for every test case;

+ Paths 2 and 3 are followed by paths 4 and 5;

« Path 5is followed by paths 2 and 3;

« Path 4is followed by paths 6 and 7;

« Paths 6 and 7 are end paths and have no successor.

With this information the path combinations of test depth level 2 can be extended to test
depth level 3:

Path combinations of

test depth level 2 Extended to test depth level 3

A: 1-2 1-2-4; 1-2-5
1-3 1-3-4; 1-3-5
5-2 5-2-4; 5-2-5
5-3 5-3-4; 5-3-5

B: 2-4 2-4-6; 2-4-7
2-5 2-5-2; 2-5-3
3-4 3-4-6; 3-4-7
3-5 3-5-2; 3-5-3

C: 4-6 No extension and already covered.
4-7 No extension and already covered.

In the same manner the test situations can be extended from test depth level 3 to test
depth level 4.

The ways in which test situations can be combined to realize test cases by coverage type
paths are described in section 3.7.3 (Process Cycle Test).

61



3.4 Coverage Types Conditions

3.4.1 Infroduction

In almost every system there are decision points, consisting of conditions, where the system
behavior can go in several different directions, depending on the outcome of such a
decision point.

Variations of such conditions and the corresponding results can be tested by making use
of various cover types, as shown below.

Coverage types within this group are:

« Decision Points (section 3.4.2)
o Condition coverage
> Decision coverage
o Condition/Decision coverage
> Modified Condition/Decision coverage
> Multiple Condition coverage

¢ Semantics (section 3.4.3)

3.4.2 Decision Points

Characteristics

Approach Coverage based — Conditions
Quality characteristic / e Functionality

Test variety «  Security

Test Basis Functional design

« Condition coverage

e Decision coverage

« Condition/Decision coverage

»  Modified Condition/Decision coverage
Multiple Condition coverage

Coverage types

Description

With almost every system, there are decision points, where the system behaviour can go in
different directions, depending on the outcome of such a decision point.

A decision point is:

a combination of one or more conditions that define the conditions for the various
possibilities in the subsequent system behaviour.

The various conditions collectively determine the outcome of the decision point. The way
in which a condition contributes to the outcome is reflected in terms such as “AND" or
“OR". There is a special kind of mathematics — Boolean algebra, or proposition logic — for

62



the manipulation of these types of constructions. This chapter employs the theory of
Boolean algebra, but the intention is not to instruct on this, and the inferested reader is
referred to the countless books on this subject. Below are the most important basic
principles of Boolean algebra that are necessary for the techniques for covering decision
points.

Some examples of decision points:

IF not in
stock THEN
order

IF amount
>1000 THEN
assess by
supervisor

IF number of
books > 8 OR
sum = 100
THEN extra
discount

Or take, for example, the following decision point that consists of only one condition:
IF ( Number of books > 8 ) THEN extra discount

IF number of
books > 8

THEN extra
discount

Decision points that consist of such singular conditions lead to two fest situations, namely
the situation in which the condition is frue and the situation in which the condition is false.

In Boolean algebra, 0 is used to indicate that something is false; 1 is used if something is
frue. In our example, this refers to the following test situations:

Test situation 1 2
Number of books |>8 <8
Result True (1) False (0)

63



Decision points can also consist of combinations of conditions, the so-called compound
condition. Compare the following compound condifions:

IF ( Number of books > 8 OR sum = €100 ) THEN exira discount

IF number of
books > 8
OR

sum = 100
THEN extra
discount

and
IF ( Number of books > 8 AND sum = €100 ) THEN exira discount
IF number of

books > 8
AND

sum = 100
THEN extra
discount

Often an abbreviation is used by replacing the conditions by a capital letter (A, B, etc.)
The two decision points mentioned above are thus abbreviated to:

A OR B and
A AND B

A compound condition is also either true or false, depending on the truth values of the
individual conditions and the way in which the conditions are connected (the so-called
operators): by an AND or an OR. With two conditions, the following combinations are
possible:

O—|0O|—|m

A
1
1
0
0

This is called the complete decision table.

In the 0-0 situation, both statements are false. In the 0-1 situation and the 1-0 situation, only
one of the two statements is frue and in the 1-1 situation, both are true. The end result in
each of the 4 situations depends on the operator *"AND” or “OR": with an “AND" the end
result of two conditfions is only true if both individual conditions are true; in all the other
cases, the end result is false. With an "OR" the reverse is the case: the end result is only
false if both individual conditions are false; in all the other cases the end result is true.

64



The tables below show the outcomes of all situations of a full decision table. Such a table is
called a truth table. Some examples:

« OR:

AORB
1

A
1
1
0
0

O|—|O|—|wm

1
1
0

With the operator OR the end result is ONLY false when both conditions are false.

« AND:

A AND B
1

o= |O|—|w

A
1
1 0
0 0
0 0

With the operator AND the end result is ONLY true when both conditions are true.

¢ Several operators:

(AANDB)ORC

B
1
1
0
0
1
1
0
0

o|l—|o|—=|lo|=|lo|=0

olo|lo|lo|—|—=|—|—|>
ol—|lol—|lo|—|—|—

In a combined decision there may be different operators. When there are no brackets,
AND proceeds OR.

3.4.2.1 Condition coverage

With Condition coverage the possible outcomes of (“true” or “false™) for each condition
are tested at least once. This means that each individual condition is one time true and
false. In other words we cover all conditions, hence condition coverage.

The outcome of the decision point is only relevant for checking the conditions. Also the
combinations of conditions are not relevant. Since there are only two possible outcomes
of a condition (true or false), condition coverage results in 2 test situations per decision
point.

In practice this coverage type is not used very often for the testing of the combinations of
the conditions and/or the outcome of the decision point itself is considered to be more
important..

65



Truth table

A B AORB
1 1 1 Condition coverage
The possible outcomes ("true” or “false”) of
1 0 1 each condition are tested at least once.
0 1 1
0 0 0

IF humberofbooks>8 OR sum=100 THEN extra discount

Number of books >8 Sum=2 100 ‘ Outcome
TS1 1 0 1 (extra discount)
152 0 1 1 (extra discount)

The condition Number of
books > 8 is one time TRUE
and one time FALSE

Number of books >8 Sum2 100 ‘ Ovutcome
TS1 1 0 1 (extra discount)
152 0 1 1 (extra discount)

The condition Sum = 100 is

aslo one time TRUE and one
time FALSE

Number of books >8 Sum 2 100 ‘ Outcome
TS1 1 0 1 (extra discount)
152 0 1 1 (extra discount)

Notice that the outcomes of

the decision do not need to
2%

66



Number of books >8 Sum2 100 ‘ Ovutcome
TS1 1 0 1 (extra discount)
152 0 1 1 (extra discount)

For Condition coverage only

two test situations are
needed per decision point

3.4.2.2 Decision coverage

With Decision coverage the possible outcomes of the decision are tested at least once.
This means that the result of the decision is one time frue and false. In other words we
cover one time the THEN and one time the ELSE.

It is relevant to vary in the outcome of the decision, not necessarily in that of the
conditions. Since there are only two possible outcomes of a decision (THEN or ELSE),
decision coverage results in 2 test situations per decision point.

Truth table
A B AORB
1 1 1 Decision coverage
The possible outcomes ("true” or “false”) of
1 0 1 the decision are tested at least once.
0 1 1
0 0 0

IF humberofbooks>8 OR sum=100 THEN extra discount

Number of books >8 Sum=2 100 ‘ Outcome
TS1 0 1 1 (extra discount)
152 0 0 0

The outcomes of the decision
is one time TRUE and one
time FALSE

Number of books >8 Sum2 100 ‘ Outcome
TS1 0 1 1 (extra discount)
182 0 0 0

Notice that the outcomes of

the individual conditions do
not need to vary

67



Number of books >8 Sum=2 100 ‘ Ovutcome

TS1 0 1 1 (extra discount)
152 0 0 0

For Decision coverage only
two test situations are

needed per decision point

68



3.4.23 Condition / Decision coverage

With Condition/ Decision coverage the possible outcomes of each condition and of the
decision are tested at least once. This implies both Condition coverage and Decision
coverage. In other words we cover that all conditions are one fime TRUE and one time
FALSE and we cover one time the THEN and one time the ELSE.

Here it is relevant to vary in the outcome of the decision, and in the outcomes of the
condifions. Since there are only two possible outcomes of a decision (THEN or ELSE), and
there are only two outcomes of a condition, test situations can be created in such a way
that only 2 test situations per decision point are needed.

Truth table
A B AORB
1 1 1 Condition/Decision coverage
The possible outcomes ("true” or “false”) of
1 0 1 each condition and of the decision are
0 1 1 tested at least once.
0 0 0

IF humberofbooks>8 OR sum=100 THEN extra discount

Number of books >8 Sum=2 100 ‘ Outcome
TS1 1 1 (extra discount)
182 0 0

The condition Number of
books > 8 is one time TRUE
and one time FALSE

Number of books >8 Sum2 100 ‘ Outcome
TS1 1 1 (extra discount)
1S2 0 0

The condition Sum > 100 is

aslo one time TRUE and one
time FALSE

69



Number of books >8 Sum2 100 ‘ Ovutcome

TS1 1 1 1 (extra discount)
TS2 0 0 0
The outcomes of the decision
is one time TRUE and one
time FALSE
Number of books >8 Sum 2100 ‘ Ovutcome
TS1 1 1 1 (extra discount)
TS2 0 0 0

For Condition/Decision
coverage only two test

situations are needed per
decision point

70



3424 Modified Condition / Decision coverage

With Modified Condition/ Decision coverage (MCDC) every possible outcome of a
condition determines the outcome of the decision at least once. In other words we cover
that each condition when TRUE determines a TRUE outcome of the whole decision point,
and when FALSE determines a FALSE outcome of the whole decision point. This implies
Condition Decision Coverage.

MCDC guarantees:

« That there is at least 1 test situation in which the outcome is TRUE, owing to the fact that
condition A'is TRUE

« That thereis at least 1 test situation in which the outcome is FALSE, owing to the fact
that condition A is FALSE

« The same goes for all other conditions in the decision point.

This is a thorough level of coverage, with which the following faults, for example, would be
detected in the system under test:

e There is a condition missing that should be present
« The "AND" was wrongly implemented as an “OR"”, and vice versa
« A condition has been inverted, such as “<" instead of “>" or “#" instead of “=".

The big advantage of this coverage type is its efficiency: with a decision point that consists
of N conditions, usually only N+1 test situations are required for MCDC. Compared with the
maximum number of test situations (the complete decision table) of 2N, thatis a
considerable reduction, particularly if N is large (complex decision poinfts). This
combination of “thorough coverage” with “relatively few test situations” makes this
coverage type a powerful weapon in the tester’s arsenal.

According to the definition of MCDC, every condition should determine the outcome of
the decision once. Then all the other conditions in that situation should be given a value
that has no influence on the outcome of the decision. This value is called the neutral
value”.

Main characteristics summarized:

* N+1 test situations
e Uses the term “neutral value”
* Value of a condition (0 or 1) that does not affect the outcome of the decision
point
o should apply for both possible outcomes of the determining condition
o0 dependson OR or AND

71



Determining the neutral value

» Nevutral value for AND

A AND B

Outcome

Let's say A is the
determining condition. A can
be true and false.

So when A is true, the
outcome has to become true.
When A is false, the outcome

has to become false.

A AND B Outcome
1 . 1
0 . 0

On these places a value has
to be added that has no

influence on the outcome of
the decision point
(a neutral value)

A AND B Ovutcome
1 1 1
0 671 0

When A is false both the value
true and false can be added here.
But since the neutral is a value

that should apply for both
possible outcomes of the
determining condition, we chose
true.

72



A AND B Ovutcome

—
p—
—

Nevutral value of AND is 1

» Nevutral value for OR

A OR B Ovutcome
1 . 1
0 0
Let's say A is the
determining condition. A can
be true and false.
So when A is true, the
outcome has to become true.
When A is false, the outcome
has to become false.
A OR B Ovutcome
1 . 1
0 . 0

On these places a value has
to be added that has no

influence on the outcome of
the decision point

73



A OR B | Outcome
1 OH 1
0 0 0
When A is true both the value
true and false can be added here.
But since the neutral is a value
that should apply for both
possible outcomes of the
determining condition, we chose
false.
A OR B | Ovutcome
1 OH 1
0 0 0

Nevutral value of ORis 0

Two ways of notation

Below, one way of notation is presented on the left side and the other (most commonly

used) way is presented on the right side.

e A as the determining factor

A OR B R

R=AORB 1

|t

A

The outcome of the decision

for this test situation is true

74



R= A OR B : 0

A

|=—
o

\

(=]
o

The outcome of the decision

for this test situation is false

e Also applied to B as the determining factor

>
o

R_B_ R R=AORB 1 0
1 0o 1
0 0o o A 10 00
o 11 o1 | oo

Since the combination “0 0”
occurs twice (two times the

same test situation) we can
strikethrough one of them

A more complex example

IF (type of car = delivery van AND first use 2 1 July 2008) OR
entrepreneur = no

THEN Tax liable

R=(AANDB)ORC 1 0

The determining values in a
diagonal

Three rows for 3 conditions

75



R=(A AND B)ORC 1 0

A 11. 0..

B 1. 0.

The determining value A is

connected with B (between

brackets) by the operator

AND. The neutral value of
AND is 1 (true)

R=(A AND B)OR C

A 1

; 1. |

The combination of A AND B
is true and is connected to C Since they are neutral values
by the operator OR. The we can add the same values
neutral value of OR is 0 here
(false)

R=(A AND B) OR C

A

The determining value C is
connected with the

combination of B and B
(between brackets) by the
operator OR. This
combination has to become
false (0)

76



R=(AAND B)ORC 1 0
A 110 010
B 110 100
C L] 0
We continue the consistent
application of the neutral
value by making one of those
conditions false. E.g. B
R=(A AND B)ORC 1 0

A 110 010
B 110 1

Also here we continue the

consistent application of the
neutral value. B is connected with
B by the operator AND. The
neutral value of AND is 1 (true)

R=(A AND B)ORC 1 0
A 110 010
B 110 1

Finalley, we strikethrough

any duplicate test situation

Please note thatin the row where C is the determining condition, for (A AND B) any
combination can be chosen for which (A AND B) is unfrue. So instead of the combination
1-0, the combinations 0-1 or 0-0 could have been chosen.

However, if 0-0 had been chosen one test situation less can be striked through, resulting in
n+2 instead of n+1 test situations. The C row would in that case have contained the test
situations 0-0-1 and 0-0-0, the latter of which is not a duplicate and can therefore not be
striked through.

77



3425 Multiple Condition coverage

All the possible combinations of outcomes of conditions in a decision (therefore the
complete decision table) are tested at least once. Since there are only two possible
outcomes of a condition (TRUE or FALSE), 2 is the basis for the number of test situations that
can be created. The maximum number of test situations (the complete decision table)
depends on the amount of conditions: 2V, where N is the amount of conditions.

Filling in a table with ones and zeros can be done in many ways. Let's take an easy
example with three conditions. This would lead to 23=8 test situations.

We could start by filling the last column with a sequence of 0 1.
For the second column we double the 0's and 1's.
For the first column we again double the 0's and 1's.

B C
0 0
0 1
1 0
1 1
0 0
0 1
1 0
1 1

Another handy way of filling in the decision table is with the use of the so called “Gray-
code”. This causes only one condition to change in value per column.

We now start with the first column. Knowing that we will get 8 fest situations, we divide the

first column into four O's and four 1's.
For the second column we spilt the amount of 0's and 1's. But there where it is possible to
"mirror" the sequence, we will do so. So in this case after 0011 we will continue with 1100.

For the last column we again split the 0's and 1's. And also here we will mirror the sequence
where possible. So after 01 we will continue with 10, and after that we will mirror again and
continue with 01 etc.

C
0
1
1
0
0
1
1
0

Oo|—=|—=|—|— |00 |w

You can see now thatin the second row only value C has changed in comparison with
the first row. In the third row only value B has changed in comparison with the second row.
Etc. This is helpful for the creation of the physical test cases: copy and paste and change
one value.

Multiple Condition Coverage (MCC) can be applied in two ways:

78



1. All combinations of 0's and 1's of conditions per decision point.
2. All combinations of 0's and 1's of all conditions from all decision poinfts.

The test basis consists of decision tables, pseudo-code, a process description or other
(functional) descriptions, in which conditions occur. The conditions and the results are put
info a decision table.

* Find conditions in the test basis

» Create a conditions list

» Find results in the test basis and add these to the conditions list
* Fillin the decision table.

3.4.3 Semantics
See section 3.7.5 (Semantic Test).

3.5 Coverage Types Data

3.5.1 Infroduction

Datais created and ends when they are removed. In between, the data are used to
update them or consult them. The data life cycle can be tested, as well as combinations
of input data and the categories of data input or output.

This group consists of the following coverage types:

e Equivalence classes (section 3.5.2)

e Boundary value analysis (section 3.5.3)

e Data Combinations (section 3.5.4)

e Syntax (section 3.5.5)

e CRUD (section 3.5.6)

e Integrity Rules (section 3.5.7)

« Data Flows (not explained separately in this Workbook)

+ Domain Testing (not explained separately in this Workbook)

Right Paths / Fault Paths (not explained separately in this Workbook)

3.5.2 Equivalence classes
Characteristics

Approach Coverage based - Data
Quality characteristic / » Primarily functionality
Test Variety

« But also applicable to other quality
characteristics and test varieties

Test Basis .
« Almost all kinds

Description

The covering of equivalence classes is a powerful means of achieving a relatively high
fault-detection rate with a limited set of test situations. The principle is simple and is applied
by most experienced testers automatically and intuitively.

79



In the application of equivalence classes, the entire value range of a parameter is
partitioned into classes, in which the system behaviour is similar (equivalent).

These are called equivalence classes.

Loan
applied

Loan
applied

No loan No loan

. 1516 17 18 19 20 21 ... . 1516 17 18 19 20 21 ...

Boundary Boundary

Help, my
bahaviour
changes

5

Loan
applied

Loan
applied

No loan No loan

. 1516 17 18 19 20 21 ... . 1516 17 18 19 20 21 ...

Boundary Boundary

80



Boundary value

A

No loan
Boundary value NOT included
in this equivalence class
18 55
No loan O Expensive loan

Standard loan

Boundary value included in

this equivalence class

The principle behind the application of equivalence classes is that each value taken from
a class has the same chance of finding a fault and that testing with several values from
the same class barely increases the chances of fault detection. It should be realized that
this is an assumption. If, with a random value in an equivalence class the correct system
behaviour occurs, it is in principle still possible for a fault to occur with another value.

Even though the underlying principle is an assumption, it is a usable and useful one. By
basing test cases on these equivalence classes instead of on every possible input value,
the number of test cases is restricted, while a safisfactory coverage is obtained of the
possible variations in the system behaviour.

No loan ensive loan

18 55
O O >
@

Staffdard loan

16 64
32

Possible values to choose from the
equivalence classes

81



3.5.3 Boundary value analysis

Characteristics
Approach Coverage based - Data
Quality characteristic / » Primarily functionality
Leartiea « But also applicable to other quality
characteristics and test varieties
Test Basis .
*  Almost all kinds
Description

If the system behaviour changes as soon as the value of a parameter exceeds a
particular boundary, thisis called a * boundary value'.

In practice, it appears that many faults are connected with boundaries. Usually these are
simply ‘sloppy programming mistakes’ in which the programmer, for example, has

accidentally programmed a “>" instead of a “2", or a “=" instead of a =",

Apart from in equivalence classes, boundaries also often occur in the coverage of
conditions and decision points. For example, in the lending system the following condition
could be defined:

IF (loan sum > salary ) THEN ...

Here, the “loan sum” is the parameter with the boundary of “salary™.

The testing of whether the boundary values have been allocated to the appropriate
equivalence class (or outcome of the condition) is a separate test goal that is achieved
by means of “ boundary value analysis”.

The technique for carrying out boundary value analysis is simple in the extreme:
« Determine the boundaries of the relevant equivalence class or condition

« Define the following 3 test situations: exactly on the boundary, directly above it,
directly below it.

This way of elaborating 3 test situations per boundary value is called the Normal variant.
There is also a (S)light variant of boundary value analysis, with which only 2 test situations
are tested: the boundary itself plus the adjacent values in the other equivalence class.

If boundary value analysis has not been opted for explicitly, experienced testers will often
intuitively apply the slight variant. Indeed, if it is a requirement to test a value from both
equivalence classes (above and below the boundary), then “exactly on” and “adjacent
to” the boundary value can be selected without any exira effort.

A disadvantage of the slight variant is that this will not uncover certain faults that are

found using standard boundary value analysis. An example of this is the previously
mentioned fault, in which a “=" has been programmed instead of a “=".

82



Boundary value analysis is not always applicable to equivalence classes or conditions.
Boundaries are not always present. Take, for example, the parameter “Gender” with the
values (and therefore equivalence classes) of “M” and “F". There is no such thing as a
boundary between the “M" and the “F". This applies also, for example, to all those
parameters in a system that belong to ‘codes’ and ‘types’.

The following is a step-by-step example of the application of boundary value analysis. The
example is about a case where a person can get aloan if they are 18 years or older but
get a more expensive loan once they are over 55.

18 55
< No loan O O Expensive loan >
@< >@

Standard loan

18 and 55 are the boundary
values

18 55

v A 4

N

S
>
No loan /N Expensive loan

< S

< rd

A Standard loan A

19 54

Normal variant
- exactly on the boundary

- directly above it
- directly below it

83



18 55

v \ 4
No loan N Expensive loan 7
@ ->@
Standard loan
17 56
3.54 Data Combinations
Characteristics
Approach Coverage based - Data
Quality characteristic / » Primarily functionality
Leartiea « But also applicable to other quality
characteristics and test varieties
Test Basis .
* Almost all kinds
Description

Within functionalities single data attributes (and their equivalence classes) may influence
the system behaviour, but many times combinations of data attributes are of influence on
variations in the system behaviour.

Depending on the agreed test intensity, the different coverage variations can be selected
on covering data combinations:

+ One or more “data pairs” (testing of the most interesting pairs of data indicated by
the experts, e.g. on the basis of risk assessment)

e Pairwise festfing

+ N-wise testing (extension on Pairwise)

* All possible combinations (= multiple condition coverage applied - see section
3.4.2 - on dataq, instead of conditions)

84



3.5.4.1 N-Wise and Pairwise

N-wise testing has the aim of testing all the possibilities of any random combination of N
factors.

The maximum value for N is equal to the number of parameters. In that case, the result is
equal to the testing of the complete decision table: all the combinations of all the values
of all the parameters. In practice, a value of 4 or higher is seldom applied. In order to
apply N-wise testing fools are required.

Pairwise testing

The most common application of N-wise testing is pairwise testing. Pairwise testing is based
on the phenomenon that most faults in software are the consequence of one particular
factor or the combination of 2 factors. The number of faults that are caused by a specific
combination of more than 2 factors becomes exponentially smaller. Instead of testing alll
the possible combinations of all the factors, it is very effective if every combination of 2
factors is tested.

The aim of pairwise testing is to test all the possibilities of any combination of 2 factors.

This delivers an enormous reduction in the number of required test cases, yet still gives a
good fault-detection result.

The following example illustrates the meaning of pairwise testing.

In the system under test (for ordering books via the Internet), the following 3 parameters
play arole. For each parameter, there are 2 equivalence classes to be tested:

Number of books: Few; many
Sum: Low; high
Membership card:  None; Gold card

In order to test all the combinations relating to these 3 parameters, 2x2x2=8 test situations
are required, namely::

Number of Sum Membership
books card

1 Few Low None

2 Few Low Gold card

3 Few High None

4 Few High Gold card

5 Many Low None

6 Many Low Gold card

7 Many High None

8 Many High Gold card

For pairwise testing, as few as 4 test situations will suffice, as shown below:

Number of Sum Membership
books card

1 Few Low None

2 Few High Gold card

3 Many Low Gold card

4 Many High None

85



Of the 2 parameters [Number of books, Sum], all 4 existing combinations are tested
(Few/Low; Few/High; Many/Low; Many/High). The same applies to the other combinations
of 2 parameters, so for [Number of books, Membership card] and [Sum, Membership
card]. Check it for yourself.

What is the point of this2 If a fault exists in the system that occurs when one of the possible
values of one of the parameters is combined with a particular value of one of the other
parameters, then this fault is always found with these 4 test cases. That is the strength of
pairwise testing.

3.5.5 Syntax

See section 3.7.4 (Syntactic Test).

86



3.5.6 CRUD

Characteristics

Approach Coverage based - Data

Quality characteristic / . .

. e Functionality

Test V

est Varlety . Suitability
« Connectivity

Test Basis - CRUD matrix
e Functional design and/or
» Detailed domain knowledge

Description

| Covering all basic operations (Create, Read, Update, Delete) on all entities.

The data that are stored and maintained in the system under test have a life cycle. This
starts when an entity is created and ends when it is removed. In between, the entity is used
by updating it or consulting it.

An overview of the life cycle of the data, or entities, is obtained with the aid of a “CRUD
matrix”. This is a matrix in which the entities are shown horizontally on the axes and the
functions vertically. The matrix is filled in using the letters C(reate), R(ead), U(pdate) and
D(elete). If a function executes a particular action in connection with an entity, this is
shown in the matrix by means of a C, R, U and/or D.

This is illustrated in the figure below:

Invoice Arficle
Management of )
articles C.UD
Create article C R
Desk payment C,R.D -

Constructing a CRUD-matrix

For the composition of the CRUD-matrix all of the functions in the system are checked. For
each identified function is determined:

* which entfities are used by this function;

* what actions (C, R, U, and / or D) are performed by these entities.

The result will be entered in the matrix

87



In more detail

Often, a special structure is visible which has to do with two groups of data elements and functions:

e Master data with management functions.
Master data are the basic data in the system. For example, “artficle” and “customer”. They are
usually maintained independently of the other data with the aid of the management functions
linked to them. This generally has the following effect on the CRUD matrix: with a management
function, only the column for the relevant master data is completed, and with all the actions: C,
R, U and D. If the master data and management functions are defined first (and in the same
sequence) in the CRUD matrix, this part of the CRUD matrix will be filled in solely on the diagonal
(with “CRUD")

* Derived data with processing functions.
Derived data are data that are produced by the specific business processes, in which master
data is used. For example, “Quote” and “Invoice”. It is the processing functions that manage
the specific business processes and produce and amend the derived data. This generally has
the following effect on the CRUD matrix: processing functions only execute the action “R” on the
master data. All the actions can be carried out on the derived data. With the derived data, the
management function rows are empty. All the actions (C, R, U and D) are carried out by 1 or
more processing functions.

In practice, it is of course permitted to deviate from this, but the reason for doing so would at least
require investigation.

The creation of the CRUD maitrix is preferably not delayed unfil during the testing, but it
should be delivered as part of the system development by the developer, for the creation
of a CRUD matrix is not only useful to testers, but also to the developers themselves: the
designing of an information system is usually reasoned from within the functions. Per
function, it is described which data will be used. In the creation of a CRUD matrix,
reasoning takes place from within the data. Per entity, it is described which functions will
use the relevant entity in which way. By creating such a cross-reference table (CRUD
matrix) anomalies and/or incomplete areas are sometimes brought to light that would
probably not be found with a function-orientated approach, whereas they are now found
at an early stage!

Testing the life cycle

The testing of the life cycle consists of 2 parts: the completeness check and the
consistency test. These are explained below:

Completeness check

This is a form of evaluation, in which it is examined in the CRUD matrix whether all 4 possible
actions (C, R, U and D) occur with every enfity. In other words, has the entire life cycle
been implemented for every entity? The lack of an action does not necessarily mean that
the system is wrong. However, the reason for it at least requires investigation.

Consistency test

This is a test that is aimed at infegration of the various functions. This checks whether the
various functions use an entity in a consistent way. In other words, is the relevant entity
being corrupted by one function in such a way that it can no longer be used by the other
functions correctly2

Test cases are derived by putting fogether an entire life cycle of an entity. This is done as
follows:

88



e Every test case starts with a “C”, followed by all the possible “U”s and ending with a
“D". If there are further possibilities of creating or removing an entity, additional test
cases are designed

e Afterevery action (C, U or D), an “R" is carried out once or more. This is to establish that
the entity has been correctly processed and is usable for the other functions (has not
been corrupted)

e Inrespect of the relevant entity, all the occurrences of actions (C, R, U and D) in all the
functions should be covered by the test cases.

With this, CRUD is fully covered in principle.

More thorough coverage of CRUD can be achieved by requiring that combinations of
actions also be fully covered. For example, by requiring that after each “U” all the
functions with an “R" should be carried out.

The example below illustrates this:
In more detail
Suppose that the entity “Order” is processed as follows by the following functions:

Create order (C); Cancel order (D); Part-delivery (U); Overview of orders (R); Stock control (R)
The standard coverage of CRUD is then achieved with the following test case:

Create order (C)
Stock control (R)
Part-delivery (U)

Overview of orders  (R)
Cancel order (D)
Overview of orders  (R)

However, with this, the following fault would not be found: after a partial delivery, the
stock control is no longer correct, because it is (wrongly) treating the whole order as
having been delivered. This fault would have been found with the more thorough variant,
which gives the result with the following test case:

Create order (C)

Overview of orders  (R)

Stock control (R)

Partial delivery V) (causes fault in “Stock control”)
Overview of orders  (R)

Stock control (R) (fault is found)

Cancel order (D)

Overview of orders  (R)
Stock control (R)

89



3.5.7 Integrity rules

Characteristics
Approach Coverage based - Data
Quality characteristic / . . .
Test VZriety » Overarching functionality
» Suitability
+ Connectivity
Test Basis .. . .
» Description of integrity rules,
» Functional design and / or
» Detailed domain knowledge
Description

Integrity rules describe the preconditfions under which certain CRUD processes are
or are not permitted.

For example, “Entity X may only be changed if the linked entity Y is removed from it".
Besides this, functional specifications or detailed domain expertise is necessary in order to
be able to predict the result of each test case.

The coverage of Integrity rules has a strong relationship with the coverage type CRUD
(Create, Read, Update, Delete). They can very well be applied together.

Since the infegrity rules can be described as decision points, decision coverage can be
applied.

The following activities should be carried out:

+ Gather the integrity rules on the selected entities. These are the rules that define
under which conditions the processing of the entities is valid or not. Integrity rules
are usually specified within the functional specifications, database models orin
separate business rules.

e Apply decision coverage (see section 3.4.2). This means that for each integrity rule,
two test situations are derived:

o Invalid: The integrity rule is not met. The process is invalid and should result in
correct error handling.
o Vadlid: The integrity rule is met. The process is valid and should be executed.

Example
A payment agreement may not be removed as long as there is an outstanding invoice
with the relevant payment agreement. This leads fo two test situations:
e IRI-I1: Delete (D) payment agreement, while an invoice is outstanding with the
relevant payment agreement
e IRI-2: Delete (D) payment agreement, without there being an outstanding invoice
with the with the relevant payment agreement

20



A shortened clear notation for this type of test situation is, for example:

Test situation | Action | Entity Condition Valid Y/N
IR1-1 D payment agreement | outstanding invoice N
IR1-2 D payment agreement|no outstanding invoice | Y

The abbreviation “IR"” means “Integrity Rule”.

3.6 Coverage Types Appearance

3.6.1 Infroduction

How a system operates, how it performs, what its appearance should be, is often
described in non-functional requirements.

Coverage types in this group are:

e Presentation (section 3.6.2)

* Load profiles (section 3.6.3)

« Operational profiles (section 3.6.4)
» Heuristics (section 3.6.5)

Other coverage types in this group are (not described in this Workbook):

* Information security-based:
o Authorization
o Authenfication
o Communication security
o Data confidentiality
o Dataintegrity
> Non-repudiation
> Privacy

e Usability-based:
o Alpha-testing
o Beta-testing
o Usability lab

3.6.2 Presentation
See section 3.7.4 (Syntactic Test).

21



3.6.3 Load Profiles

Characteristics
Approach Coverage based - Appearance
Quality characteristic /
Test Variety . Perfo.rm'cmce
*  Continuity

+ Connectivity
» Effectivity

Test Basi it isti i
est Basls  Description of redlistic use (profiles)

Description

Load profiles describe the loading under which the system operates in terms of how many
users are operating the system at once. The testing of load profiles has the aim of
examining whether: “The system still works correctly when many transactions are carried
out by many users at once”.

Load profile are often applied in combination with coverage type Operational profiles.

Load profiles show the degree to which the system resources (CPU, memory, network
capacity) are loaded in redlity. The loading is usually shown in terms of the number of users
or number of times that a fransaction is carried out in a particular period. Usually, the
loading of a system is not continuously even, but varies over a period of time: there are
peaks and valleys within a 24-hour stretfch. Often, weekends will show a different loading
from weekdays. And during holiday periods and public holidays, the loading of a system
may look different again.

For the creation of a load profile, information from the following sources is combined:
« Measuring the loading of the system using specific tools (monitors). The
responsibility for this usually resides with a department for “Technical System
Administration”.
* Inferviewing users. In fact, this amounts to the following questions: “Which
transactions do you carry oute How often, and wheng”

The testing of load profiles comes under what is often referred to as “performance testing”
and is a testing specialism in itself. While it is possible to do manually, tools are usually
employed that generate a particular loading of the system. Using the tools, a realistic
loading is simulated, such as:
¢ Creation of virtual users.
A virtual user is a small program that simulates a user. On one PC, many such
programs can run at once. This avoids the need for the physical presence of a
separate PC for each user. This is mainly applied for subjecting the enfire system,
including the network, to a particular loading.
+ Offering fransactions via the database-management interface.
This creates a certain loading of the back-end of the system without overloading
the front-end or the network. It facilitates direct measurement of whether the
database server has the appropriate dimensions.

There are various types of performance tests that each have a different goal. The most
common are:

92



+ Testing with normal or average usage.
The aim here is to examine whether the available system resources are adequate
for the ‘usual’ circumstances. The idea here is, that it can be commercially
advantageous to deploy extra resources for the rare occasions that ‘exceptionally
heavy loading’ takes place.

* Testing with peak loading.
The aim here is to examine whether there are sufficient system resources for even
the most demanding circumstances that may arise in practice.

* Measuring the breaking point.
This is also known as “stress testing”. The aim here is to examine what the maximum
load is under which the system will still perform acceptably. With a particular system
configuration, the loading is stepped up, while the response time is measured. This
can be shown in a graph. At the point when the graph shows a sharp incline, the
response time increases disproportionately fast (the response ‘collapses’) and the
breaking point has been reached.

3.6.4 Operational Profiles
Characteristics
Approach Coverage based — Appearance
Quality characteristic /
Test Variety » Performance
« Continuity

» Connectivity
» Effectivity

Test Basis

» Description of realistic use (profiles)

Description

An operational profile describes in quantitative terms how the system is used by a
particular type of user. This concept was infroduced by John Musa; you are referred to his
work [Musa, 1998] for a more comprehensive discussion of operational profiles. Below is a
brief explanation.

An operational profile describes the realistic usage by answering the question: “When the
system is in this condition, how great is the chance that this action will be carried out by
the user?” In the literature, instead of condition and action, reference is usually made to
history class and event. An operational profile provides a statistical average of how ‘the
user’ handles the system. If various types of users are distinguishable who display
significantly varied statistical average behaviour, it is advisable to create a separate
operational profile per user type.

Operational profiles are often applied in combination with coverage type Load profiles.

93



3.6.5 Heuristics

Characteristics
Approach Coverage based - Appearance
Quality characteristic / . .
Test VZriety » User-friendliness
» Suitability
» Effectivity
« Usability
Test Basis .. . . .
» Description of realistic use (profiles)

Description

Heuristic evaluation is one of the best-known ways of testing usability. During a heuristic
evaluation, a systematic examination is carried out of the usability of the design of the user
interface. The ultimate aim of heuristic evaluation is to discover problems in the design of
the user interface. By finding such problems at the design stage, it is possible to solve them
in fime. During the process of heuristic evaluation, a group of 3-5 experts (evaluators) give
their opinion on the user interface in accordance with a number of usability principles (also
known as the "heuristics”).

In more detail
Nielsen distinguishes 10 heuristics; see [Nielsen, 2006]:

*  Visibility of the system status

¢ Match between the system and the real world

e User control and freedom

* Consistency and standards

* Error prevention

e Recognition rather than recall

* Flexibility and efficiency of use

* Aesthetic and minimalist design

* Help for users to recognize, diagnose and recover from errors
* Help and documentation

3.7 A basic set of test design techniques

3.7.1 Infroduction

The basic principles of test design techniques are described in section 3.2.2 (The Generic
Test Design Steps) and section 3.2.5 (Test design techniques).
In this section, a number of test design techniques will be explained:

+ Data Combination Test (section 3.7.2)
» Process Cycle Test (section 3.7.3)

« Syntactic Test (section 3.7.4)

¢ Semantic Test (section 3.7.5)

e Decision Table Test (section 3.7.6)

924



e Elementary Comparison Test (section 3.7.7)
e Data Cycle Test (section 3.7.8)
e Readl Life Test (section 3.7.9)

3.7.2 Data Combination Test (DCoT)
Characteristics
Approach Coverage based - Data
But also: Experience based
?e l;?llltzr;:el;;:racterlshc / « Overarching functionality
+ Detailed functionality
SOIREEE e Equivalence classes
e Optional: data combinations
+  Optional: boundary value analysis
B + Alltypes of information on the functionality of the
system
* Including: domain expertise
Description

The data combination test (DCoT) is a versatile technique for the testing of functionality
both at detail level and at overall system level. In the embedded world, this technique is
also known as the “Classification Tree Method”. It was developed by Grochtmann and
Grimm, and is described in “Testing Embedded Software” [Broekman, 2003] and
elsewhere.

For the DCoT, no specific test basis is required. All types of information on the functionality
of the system are usable:

¢ Formal system documentation, such as functional design, logical data model and
requirements,

+ Informal documentation, such as manuals, folders, pre-surveys and memos,

« Domain expertise that is not documented, but resides ‘in the experts’ heads’.

The fact that domain expertise is usable as a test basis also makes this technique suitable
for situations in which specifications are incomplete or out of date, or even unavailable
altogether.

Because of the strongly informal character of this technique, the quality of the test cases
designed with it is largely determined by the expertise and skill of those involved. For that
reason, the DCoT is preferably carried out by a team of 2 to 5 persons with a mix of
expertise: test, domain and system expertise.

Tip
Organize a ‘creative session’, such as brainstorming or meta-planning, in which the tester acts as
moderator of the process. Invite one expert to this session from every relevant discipline, e.g. a user,

an administrator and a system developer or system architect. The experts will supply the substantive
information, which can be structured by the tester and converted into test situations and test cases.

With the DCoT, the test situations are determined by reasoning from within the data
aftribute as to which variations should be tested. The coverage type that is always used
here is:

925



« Equivalence classes.

Depending on the agreed test intensity, the coverage can be extended by fully
combining the equivalence classes of two or more different data. For this coverage type
data combinations is used:

e One or more “data pairs” (testing of the most interesting pairs of data indicated by the
experts, e.g. on the basis of risk assessment)

e Pairwise festing

* N-wise testing (extension on Pairwise)

e All possible combinations (= mulfiple condition coverage applied - see section 3.4.2 -
on data, instead of conditions)

Besides these, there is the option of reinforcing the test by applying boundary value
analysis. This can also be applied selectively, by defining the boundary values for specific
data attributes as a separate equivalence class.

Thanks to its versatility, the data combination test is suitable both for testing those functions
that are deemed very important, and for testing system parts that ‘just need a quick test’.

Points of focus in the steps

In this section, the data combination test is explained step by step. The generic steps of
test design (see section 3.2.2) are the starting point. Every step of this technique is
explained by means of the same example case.

Example case

This example is about a function with which reservations can be made for a flight:

The user enters a number of data on the composition of the group (adults, children,
infants) as well as on the planned journey (destination, period).

After that, the user can choose the criteria by which the most suitable flight should be
searched.

The system will then show a list of possible flights or a message, in case there is no flight
available that meets the criteria and has the needed number of seats still available.
This function must be tested with average test intensity, using the DCoT.

1- Identifying test situations

Identifying test situations is the creative step in the process and is ideally carried out by a
team in which various forms of expertise are represented. During this step, the following
activities are carried out:

+ Determine the data attributes that influence the functionality. This does not
automatically mean all the data attributes that are used by the function. It concerns
the data attributes that are of influence on variations in the system behaviour. This
includes the data aftributes for which equivalence classes can be determined. The
defined data can consist of entities, attributes or functional concepts in a general
sense..

« Determine the equivalence classes for each data attribute.
See section 3.5.2 for this.

« Determine the relationships between the data attributes.
Some data attributes are only of influence on the system behaviour under certain
conditions, namely if another data attribute has a value from a specific equivalence
class. That means that the possible variations of the first-mentioned data attribute must
be combined with the specific value of the last-mentioned data attribute. In the

26



example set out, such a relationship is visible between the data attributes “search
criterion” and “flies to that desfination™.

The result can be illustrated in a ‘classification tree’:

« Data attributes that logically belong together can be grouped under an overall fitle,
such as “personal details” or “*employer types”

« Under every data attribute the equivalence classes are hung, like branches on the tree

e Relationships between the data can be shown simply by hanging the relevant parts of
the classification tree directly under the relevant equivalence class.

The creation of the classification tree with which the test situations are identified is an
iterative and interactive process, in which the parties involved inspire, correct and
complement each other. How far this process will go is the choice and responsibility of the
team. A test manager who wishes to keep this well under confrol will provide a concrete
job description for the team and request regular feedback on the results.

If required, it is defined which data attributes are eligible for ‘fully combined testing'. That
means that all the possible combinations of all the equivalence classes of those data
aftributes should be tested. How many of such combinations should be defined depends
on the agreed test intensity.

Tip
The following can be used as a rule of thumb:
Light No or just one data pair.
Average Two or more data pairs. This offers an increasing scale of test intensity
that ends with “pairwise testing”.
Thorough Average test intensity + boundary value analysis.

Instead of combinations of two data attributes (data pair) it can be defined that all
combinations of three data afttributes (data triplet) must be fested. This implies an increase
of the test intensity.

Example case solution

For the function "seat reservation” the team came up with the following classification free:

reservation

group composition planned journey

search

infant destination o
criterium

outside
1 >1 0 >1 0 >1 EU Europe 1lday longer

<1 year

preference

L cheapest
airline company

rest of Europe fastest

flies to that

destination

yes no

97



The following aspects have been taken into account:

« A passenger can either be an adult, a child or an infant. An infant has no seat of its
own on the plane.

« A planned journey that is longer than a year might cause confusion on the date for the
homeward journey.

« An airline does or does not fly to the planned destination. This is only relevant under the
assumption that this airline has been entered as a search criterion.

Fitting the agreed average test intensity, two data pairs have been defined that must be
tested fully combined:

« child —infant (4 mandatory combinations)

« destination — flies to that destination (6 mandatory combinations)

2- Creating logical test cases

With alogical test case, precisely one of the equivalence classes is covered for every data
attribute in the classification free. Collectively, the logical test cases should at any rate
cover all the equivalence classes of all the data attributes. Depending on the chosen test
intensity, they should also cover all the combinations of equivalence classes of particular
data attributes, if necessary. Basically, there are two ways of demonstrating this clearly:

e In table form.
This method is usually employed where the “pairwise testing” (see section 3.5.4) option
has been adopted. Tools for pairwise testing normally deliver their results directly in
table form.

e Graphic depiction of a ‘classification tree’.
This is particularly useful if the most elementary form of testing (without combinations)
has been chosen, or for the selective application of “complete decision table”
coverage. Ideally, a graphic tool should be used here. The tool “Testona” can be
downloaded via the Internet (http://www.berner-
mattner.com/de/produkte/testona/index.html).

98



Example case solution

The logical test cases have been depicted in the classification tree:

N
N

| cheanest

- - - &
T 1
o Y & Y o Y
T — — — — —
_ N I F Y N = o
Sy —1T—717 T T a ¥ ¥
FS L rs L A L
TC-4 E—: F— F— F—1 E— E—
(] =) - - - -
I
& @ & ® & -
T T T T T
= = i 1 i g 1
UG \ o —w - \ -
L A i N i i 7 & i £ i i Y
-8 ¥ T ~ T T v hd T hd T T hd

The two data pairs that must be tested fully combined have been taken into account first
(the black pellets). Test cases TC-1 to TC-4 cover the data pair “child - infant”, whilst the
data pair “destination - flies to that destination™ are covered by the test cases TC-1 to TC-
6. The next steps are to ensure that every equivalence class is covered at least once and
to make every test case complete so that for every test case every relevant data attribute
has a value (the red pellets).

Note: For achieving minimal coverage (only covering the equivalence classes and not
any combinations of data pairs), 4 logical test cases will suffice here. For instance TC-1, TC-
4, TC-7 and TC-8.

3- Creating physical test cases

In creating the physical test cases, concrete values should be chosen for all the input
data. These input data do not always correspond exactly with the concepts maintained in
the classification tree. For example, the classification free may contain the concept of
“"duration”, while the function to be tested expects the data “Start date” and “End date™”.

Every physical test case should have a concrete predicted result. However, this generally
depends on the other data and system settings that belong with the chosen starting point.

99



Example case solution

To illustrate this, in the table below four of the test cases have been made physical. For
each test case the physical values of all needed input data have been defined.
Furthermore, the predicted result has been made concrete.

1C-1 1C-2 1C-3 1C-7

customer name O'Brien Smith Atkinson Cleese
#adults 1 ) 1 2
#children 0 0 2 1
#infants 0 1 0 0
destination France-CdG Germany- Switzerland- Singapore-

Frankfurt ZUrich Changi
date of departure 12-02-2016 14-02-2016 15-02-2016 16-02-2016
date of return 12-02-2016 15-02-2016 16-02-2017 23-02-2017
search criterion KLM Kenya Airways Canada Air Fastest
Predicted result Message:

"Airline does not

fly to destination

of choice.”
airline Canada Air Singapore Airlines
flight number KL1288 CA0833 SA0455
price €144 €283 €956

In order to predict the results of every physical test case, it is necessary to know exactly
which flights and prices are stored in the database. This step goes hand-in hand with the
next step, “Establishing the starting point™.

4- Establishing the starting point

No remarks.
Example case solution

The following database has to be loaded:"TST_RES_03". This contains in particular the
situation that the company “Senegal Airlines” exists, but does not recognize “Eindhoven
Airport” as a destination.

Set the system date to 01-02-2006(1 February 2006).

100



3.7.3 Process Cycle Test (PCT)

Characteristics
Approach Coverage based - Process
?etgfl\lltzr;:el;;:ractenshc / . Suitability
+ Functionality
SO 15 . Paths: fest depth level 2
[StEs * AO description
e procedure diagram
« description business processes / work processes
(like workflows)
+ Functional specifications
Description

The process cycle testis a tfechnique that is applied in particular to the testing of the
quality characteristic of Suitability (intfegration between the administrative organization
and the automated information system). The test basis should contain structured
information on the required system behaviour in the form of paths and decision points.

The process cycle test digresses on a number of points from most other test design

techniques:

e The process cycle testis not a design test, but a structure test: the test cases issue from
the structure of the procedure flow and not from the design specifications.

* The predicted result in the process cycle test is simple: the physical test case should be
executable. This checks implicitly that the individual actions can be carried out. In
contrast to other test design techniques, no explicit prediction is made of the result,
and so this does not have to be checked.

The process cycle test focuses on the coverage of the variations in the processing. The
coverage type used in this is:
e Paths: test depth level 2

Variations on the process cycle test can be created by applying variations of the
coverage type:
e Paths: test depth level 1, test depth level 3 and higher

With this, paths can be tested with respectively less or more depth.

Points of focus in the steps

In this section, the process cycle test is explained step by step. The generic steps of fest
design (see section 3.2.2) are the starting point. Every step of this fechnique is explained by
means of the same example that was used to explain coverage type paths (see section
3.3.2).

1- Identifying test situations

In order to apply the process cycle test, a process diagram is required. This diagram should
contain, besides a start and end point, decision points and paths. If the test basis already
contains a diagram, then for the sake of clarity it is offen useful to ‘undress’ it, so that it only
contains the above-mentioned aspects. If there is no diagram present in the test basis, the
tester will have to distil the decision points and paths from the test basis himself in order to

101



create a diagram. Subsequently, the test situations are derived from the diagram using
coverage type paths: test depth level 2, as described in section 3.3.2.

Start

ol

A :,T,T ;': Path combinations -
Y test depth level 2
B: IN: 2,3 A 1-2 1-3 5-2 5-3
OuT: 4,5
B | 24 | 2-5 | 34 | 3-5
C: IN: 4
OUT: 6,7 C | 46 | 47

C
i
End

2- Creating logical test cases

The creation of the logical test cases consists of two activities:
+ Creating a set of logical test cases
+ Describing the consecutive actions per logical test case.

In the creation of the set of logical test cases, all the test situations should be covered. A
test case is defined by going through the process in a certain way from “Start” to “End”.
The testeris free to choose the way in which the process is followed, as long as all the test
situations are covered at least once.

If necessary, it can be shown with the aid of a cross-reference matrix that all the test
situations are covered with the chosen set of test cases.

Basically, there are two ways to create a covering set of test cases:

«  Working from the process chart, define a test case by running through the process in a
particular way from “Start” to “End”. The tester is in principle free to choose the exact
way of going through the process. Cross out of the list of path combinations every
combination that occurs in this test case. Repeat this process until the list of path
combinations is completely crossed out.

«  Working from the list of path combinations, start with a path combination that begins at

“Start”. Seek a subsequent path combination that starts with the path with which the
previous one ends - like sefting down domino files, in fact. Continue seeking a
subsequent path combination until "End” has been reached. Obviously, previously
unused path combinations should be used as much as possible

102



Go through the process from
“Start” to “End”, until every test

situation has been covered at least

once by a logical test case.

A: IN: 1,5 - -
OuUT: 2,3 Path combinations - level 2
A 1-3 | 5-2
B: IN: 2,3 )/[ }’3,
OUT: 4,5 B 2-4 ;;5/ ;;4’ 3-5
c: IN: 4 c |46 | a7
OUT: 6,7

Logical test cases

TC1 1-2-5-3-4-7

Continue this until all test
situations (path
combinations) have been

covered.

Go through the process from
“Start” to “End”, until every test
situation has been covered at least
once by a logical test case.

Path combinations - level 2

o

5

>

;;Y

57
3

55
35

=

7

A: IN: 1,5
OUT: 2,3
A
B: IN: 2,3
OuT: 4,5 B
c: IN: 4 c
OuT: 6,7

Logical test cases

TC1 1-2-5-3-4-7

TC-2 | 1-3-5-2-4-6

Continued until all test

situations were covered.

Start

44

The logical test cases can then be written out. This means that for each test case a row of
consecutive actions is described, in such a way that the execution of these actions will

touch on all the test situations from the test case. This activity requires inventiveness and is
therefore rather difficult to describe in general terms.

103



Start

Logical test cases

TC1 |1-2-5-3-4-7 5

TC?2 1-3-5-2-4-6

TC1 (1-2-5-3-4-7):

ool

*Al-1 Create claim form (Insured)
Al-2 Enter claim form details into the system

(incomplete) (Employee) -
*Al-3 Start the process “Check for completeness”

(Employee)

Al-4 Contact the insured party to complete the

details (Employee)
*Etc.

3- Creating physical test cases

Besides the previously mentioned differences from the other test design techniques, there
is another difference to note. With the test execution, there is more required in the process
cycle test than just the technical test infrastructure on which the automated part of the
information system runs. The manual procedures mainly have to be carried out by various
types of employees, which means that several testers are required to play particular roles
in the test execution. It is of course also possible to have the test executed by one tester
who possesses several user IDs, repeatedly logging in and out during the test execution. In
addition, the required data are only partly present in the database of the automated part
of the information system, and the rest is outside the system, for example in the form of
completed forms. That, too, is different from the other test design techniques.

In the creation of the physical test cases, a physical formulation of the logical test cases is
supplied. With this, the actions described serve as a starting point.

104



TC1 (1-2-5-3-4-7):

Insured party

*Al-1 Create claim form with following details: 5
*Name :Smith, J.
*Etc.

Employee

*Al-2 Enter claim form details into the system
(without “Date of loss" and without
"Description of loss")

*Al-3 Start " Check forcompleteness’ process (form
is incomplete)

*Al-4 Contactinsured party to obtain "Date of loss"

*Efc.

4- Establishing the starting point
No remarks.

5- Creating the test script
Often not done, since the physical test cases already consist of full scenarios.

3.74 Syntactic Test (SYN)
Characteristics
Approach Coverage based - Data
Coverage based — Appearance
TQe‘;?I\'erg;;mde"s“C / « Functiondlity (Validation test)
* User-friendliness (Presentation test)
Coverage Type . Syntax
e Presentation
Uy HeEE « Data dictionary or other data models
« Style guides
+ List and screen specifications
Description

The syntactic test, together with the semantic test, belongs to the validation tests, with
which the validity of the input data is tested. This establishes the degree to which the
system is proof against invalid, or ‘nonsense’ input that is offered to the system willfully or
otherwise. This test is also used to test the validity of output data.

105




Besides that, the syntactic testis also a presentation test, which tests the layout of the
screens. Presentation tests can be applied to both input (screens) and output (lists,
reports).

3.7.4.1 Validation test

Validation tests focus on atfributes, which should not be confused with data. An input
screen or other random interface contains attributes that are (to be) filled with input
values. If the sections contain valid values, the system will generally process these and
create or change certain data within.

The test basis for the syntactic test consists of the syntactic rules, which specify how a
aftribute should comply in order to be accepted as valid input/output by the system.
These rules actually describe the value domain for the relevant attribute. If a value outside
this domain is offered for the attribute, the system should discontinue the processing in a
conftrolled manner — usually with an error message.

Syntactic rules may be established in various documents, but they are usually described in:
« The ‘data dictionary’ and other data models, in which the characteristics of all the
data are described
» Functional specifications of the relevant function or input screen, containing the
specific requirements in respect of the attributes.

The syntactic rules may take a random order and be tested independently of each other.

Usually, in practice, the input screens of data are used to test the syntactic checks.
Coverage type Syntax is being used.

Overview of attribute checks:

« Datatype
E.g. numeric, alphabetical, alphanumeric, etc.

» Fieldlength
The length of the input field is often limited. Investigate what happens when you
attempt to exceed this length. (Press the letter key for some time, for instance.)

* Input/ Output
There are 3 possibilities here:

o I No value is shown, but may be or must be entered
o U The value is shown, but may not be changed
o U A value is shown, and may be changed.

e Default

If the attribute is left empty, the system should process the default value.
If it concerns a Ul field (see above), the default value should furthermore be shown.

* Mandatory / Non-mandatory
A mandatory attribute may not remain empty.
A non-mandatory attribute may remain empty. In the processing, either the datum
is left empty or the default value for this datum is used.

« Selection mechanism

106



A choice has to be made from a number of given possibilities. It is important here
whether only one possibility may be chosen or several. This is particularly the case
with GUIs (Graphical User Interface), e.g. with:

o Radio buttons (fry to activate several)

o Check boxes (try to activate several)

o Drop-down box (try to change the value or make it empty).

« Domain
This describes all the valid values for this attribute. It can, in principle, be shown in
two ways:
o Enumeration
For example {M, F, N}
o Value range
All the values between the given boundaries are permitted. The value
boundaries themselves, in particular, should be tested. For example, [0,
100>, where the symbols indicate that the value range is from 0 to 100,
including the value 0, but excluding the value 100.

Tip
In practice, the value 0 (zero) can cause problems in input fields. It is advisable to
try out the value 0 at every input field.

« Special characters
Can the system handle special characters, such as quotes, exclusive spaces,
question marks, Ctrl characters, etc.?

*  Format
For some attributes, specific requirements are set as regards format, e.g.:

o Date
Common formats, for example, are YYYYMMDD or DD-MM-YY

o Postal code
The postal code format basically varies from country to country. In the
Netherlands, the format for thisis “1111 AA” (four digits followed by a space
and two leftters).

3.7.4.2 Presentation test

Presentation tests test the layout. They can be applied to both input (screens) and output
(lists, reports). Coverage type Presentation is being used.

Overview of format checks:

e Headers / Footers
o0 Are the standards being met in this regard?
For example: standards for screen or list name, system or print date, version
number.
e Affributes
o Per aftribute, specific formatting requirements are defined.
For example: name of the attribute, position of the attribute on the screen
or overview (like the position of the address when the letter is being sentin a
window envelope) or depiction of the attribute, such as font, color, etc.
e Otherscreen objects

107



o If necessary, such checks as are carried out on “Attributes” can be applied
to other screen objects, such as “push buttons” and "“drop-down lists”.

3.7.5 Semantic Test (SEM)
Characteristics
Approach Coverage based — Conditions
Quality characteristic / . . . N
Test Variety Functionality (Validation test)
SB[ 20 « Semantics => Decision points: Modified Conditfion /
Decision Coverage
Uy e + Functional specification
e Overarching ‘business rules’
Description

The semantic test (SEM), fogether with the syntactic test, belongs to the validation tests,
with which the validity of the data input is tested. In practice, the semantic test is often
executed in combination with the syntactic test (see section 3.7.4).

The test basis consists of the semantic rules that specify what a datum should comply with
in order to be accepted by the system as valid input. Semantic rules are about the
relationships between data. These relationships may be between the data within a screen,
between data on various screens and between input data and existing data in the
database. Semantic rules may be established in various documents, but are usually
described in:

« Functional specifications of the relevant function or input screen
« The business rules that apply to the functions overall

Tip
If the semantic rules describe the conditions for meeting security requirements, the SEM
can also be applied to the test type “Security test”.

With the semantic test, user-friendliness aspects can also be tested, by assessing the
messages that occur in invalid situations:

« Are they understandable and unambiguous?
« Do they offer clear indications of how the invalid situation can be resolved?

Since the semantic rules can be specified as decision points that consist of compound
condifions, for the semantic test one of the coverage types from the area of decision
points is selected. The default choice for the semantic test is:

« modified condifion/decision coverage.
Variants can be realized simply by replacing this with:
« condition/decision coverage, for a lighter variant

« mulliple condition coverage, for a more thorough variant.

Points of focus in the steps

In principle, for the SEM, too, the generic steps (see section 3.2.2) are carried out.
However, the construction of a semantic test is very simple: each semantic rule is tested

108



separately. Each rule leads to one or more test situations and each test situation generally
leads to one test case.

For that reason, this section is restricted to explaining the first step “identifying test
situations”. This will be explained and expanded on through an example.

1- Identifying test situations
A semantic rule that describes the conditions of validity can generally be set out as
follows:

IF (semantic rule) THEN valid input or processing
ELSE error message

In the event that the semantic rule describes the invalid situations in which an error
message should occur, this becomes:

IF (semantic rule) THEN error message
ELSE valid input or processing

The semantic rule is a decision point that consists of one or more conditions connected by
AND and OR. A single condition has only two test situations, one for valid input and one for
invalid input. For compound conditions, the test situations are derived by applying
modified condition/decision coverage (MCDC), as explained in section 3.

Example
Suppose that the following semantic check is specified:

“IF customer lives in the Netherlands AND (postal code does not comply with Netherlands
format OR country code is different from 31) THEN this results in an error message.”

The following occurs after applying MCDC:

/Ii]AND (B ORC) ]error message Solid input
A: customerin NL 110 (1) 010 (3
B: postal code not in NL =0 100 (4)
C: country code # 31 101 (2 +595

In more detail
In practice, semantic rules are sometimes described in the form:
“IF item X meets condition A, THEN condition ... should also be met”

The pitfall here is that it appears as though the semantic rule only consists of the condition
“IF item X meets condition A”. However, that is not the case. Everything that comes after
the “THEN" also describes the conditions that should be met. In fact, this way of writing the
semantic rule is an example of the “imply operator” in Boolean algebra. The truth table for
this operator, which is shown by the symbol “=", is:

A B A=>B
1 1 1
1 0 0
0 1 1
0 0 1

Now, a conditfion that is described by the imply operator can be converted simply into a
compound condition with the same truth table:

109



“A = B”is equivalent to “(NOT A) OR B"

Coverage type modified condition/decision coverage can be applied to the resulting
compound condition — that contains only the operators AND, OR and NOT — without
difficulty.

The example below explains this further.
Suppose that the following semantic rule is specified:
“When code_confribution = V THEN code_employment must be = F AND Age = 55"
An imply operator has been applied here, whereby the rule actually looks like this:
“code_conftribution =V = (code_employment = F AND Age = 55)"
This can be converted into the following compound condition:
“(NQOT code_contribution = V) OR (code_employment = F AND Age = 55)"
or
“code_contribution # V OR (code_employment = F AND Age = 55)”
Applying coverage type MCDC produces the following four test situations:

/[z]OR (B AND C) \]/olid input grror message
A: code_contribution # V 110 (1) 010 (3)

B: code_employment = F 011 (2) 001 (4
C:age 255 o1 019

2- Creating logical test cases
The test situations from step 1 are one-on-one the logical test cases.

Example

Working out the four test situations from our example immediately gives us the four logicall
test cases:

Test cases/ D1-1 D1-2 D1-3 D1-4
Test situations

Customer in NL in NL not in NL in NL
Postal code not in NL in NL not in NL in NL
Country code 31 # 31 31 31
Expected result Error Error OK OK

message message

3- Creating physical test cases
No remarks.

4- Establishing the starting point
No remarks.

110



3.7.6 Decision Table Test (DTT)

Characteristics
Approach Coverage based - conditions (if applicable: data)
?etgfl\lltzr;:el;;:ractenshc / + Functionality
e Detailed functionality (functions that are being
considered to be very important and/or complex
calculations)
¢ Thorough coverage of conditions
» Not: combining functional paths
SO 15 » Decision points: Multiple Condition Coverage
+ |f applicable: Data combinations
UeBrHeEk « Decision tables, pseudo-code, a process description or
other (functional) descriptions that contain conditions
Description

The decision table test is a thorough technique for the testing of detail functionality. The
required test basis contains conditions or decision tables. The type and structure of this test
basis is of minor importance to the application of the decision table test technique.

The decision table test is aimed at the thorough coverage of the conditions and not at
combining functional paths. The coverage type used here is:

» Decision points: multiple condition coverage
Variations on the decision table test can be created by applying other coverage types:

« Decision points: condition coverage, decision coverage or condition/decision
coverage
With these, less test intensity is achieved.

« Boundary value analysis
With this, a condition can be tested with a more thorough test intensity.

This technique will mainly be chosen for testing functions and/or complex calculations
considered to be very important.

Points of focus in the steps

In this section, the decision table test is explained step by step, taking the generic steps as
a starfing point (see section 3.2.2. The generic test design steps). An example is used at
every step to show how this fechnique works.

The test basis consists of decision tables, pseudo-code, a process description or other
(functional) descriptions, in which conditions occur. The conditions and the results are put
into a decision table. The general occurrence of a decision table is shown in the table
below.

Identification table

Test situations 1 2 . n

Condition 1 0 0 . 1

Condition 2 0 ~ . 0

111



Identification table

Test situations 1 2 x n
Condition .. 0 . ~ 0
Condition n 0 1 . 0
Result 1 X

Result ..

Result n

Each column of the decision table forms a test situation. The part above the double line
forms the situation description and the part below the line reflects the consequences, or
the results.

The conditions can either have the values of “0" or “1"” (see section 3.4.2). The value “1”
means that the condition is true; the value “0" means that the condition is false. The value
“~" can also be allocated. This means that the value of the condition is not important.
Below the double line, the cells contain an “X", or are empty. Where there is an “X", the
relevant result occurs in that test situation; if a cell is empty, the relevant result does not
occur in that test situation. Several results are possible per test situation. *Not possible”
indicates that the test situation is not physically executable, for example because certain
values of conditions exclude each other.

Example

When ordering coffee capsules via the Internet, the shipping costs are calculated. These
consist of the standard shipping costs, plus a long-distance supplement. The text below
shows the associated process description.

Shipping costs calculation:

Calculation of standard shipping costs

If 200 or more capsules are ordered and if the form of payment is “direct debit”, then no
shipping cost is applied. If fewer than 200 capsules are ordered, or if the form of payment
is other than “direct debit”, then a shipping cost of €10 is applied.

Calculation of long-distance supplement

If the delivery address for the capsules is within a radius of 50 km of Utrecht, no long-
distance supplement is applied. If the delivery address is 50 km or more from Utrecht, but
still in the Netherlands, then a long-distance supplement of €5 is applied. If the delivery
address is outside of the Netherlands, then a long-distance supplement of €15 is applied.
(The highest sum is applied.)

Below, each step is set out showing how the decision table test is applied to this process:

1- Identifying test situations

To fill in the table, in step 1 “Identifying test situations” the following activities are carried
out:

» Find conditions in the test basis
» Create a conditions list
» Find results in the test basis and add these to the conditions list

» Fillin the decision table.

112



The activities are explained below:

Revealing the conditions involves quite some detective work. Often, a condition in the test
basis is preceded by words such as “as long as”, “if” and “then” and can be searched for
by looking for these words.

Example

The tester has underlined the conditions in the process description.

Shipping costs calculation:

Calculation of standard shipping costs

If 200 or more capsules are ordered and if the form of payment is “direct debit”, then no
standard shipping costs are applied. If fewer than 200 capsules are ordered or if the form
of payment is other than "direct debit”, then a standard shipping cost of €10 is applied.

Calculation of long-distance supplement

If the delivery address for the capsules is within a radius of 50 km from Utrecht, then no
long-distance cost is applied. If the delivery address is 50 km or more from Utrecht, but still
in the Netherlands, then a long-distance supplement of €5 is applied. If the delivery
address is outside of the Netherlands, then a long-distance supplement of €15 is applied.

Subsequently, a conditions list is created. If the test basis is a decision table, the conditions
can often be copied one for one. In creating the list, the following rules are applied. These
rules are created in order to keep the decision tables clear and intelligible:

e A condition is singular (meaning: without “AND" or “OR” constructions)
» A condition is formulated positively (in order to avoid “not not” combinations)

« Try to keep the number of conditions per table to five or lower (that is maximum 25 = 32
test columns). If there are more conditions, split the table into several tables.

Example

Concerning the shipping costs calculation, the tester arrives at the following conditions list:

Calculation of standard shipping costs
C1 order = 200 capsules
C2 form of payment = “direct debit”

Calculation of long-distance supplement
C3 distance < 50 km from Utrecht
C4 country = The Netherlands

Creating a conditions list may require some interpretation of the description. There often
appears to be more conditions necessary in order to reach a particular situation. In that
case, investigate whether there is indeed a supplementary condition or if a particular
sifuation can be realized by one or more of the recognized conditions being false.

When the conditions list is known, the results are added to it. The tracing of the results also
involves some detective work. A result is often preceded in the test basis by words such as
“then” and “else"”.

Example

The tester has underlined the results in the process descripfion.

Shipping costs calculation:
Calculation of standard shipping costs

113



If 200 or more capsules are ordered and if the form of payment is “direct debit”, then no
standard shipping costs are applied. If fewer than 200 capsules are ordered or if the form
of payment is other than “direct debit”, then a standard shipping cost of €10 is applied.

Calculation of long-distance supplement

If the delivery address for the capsules is within a radius of 50 km from Utrecht, then no
long-distance supplement is applied. If the delivery address is 50 km or more from Utrecht,
but still in the Netherlands, then a long-distance supplement of €5 is applied. If the delivery
address is outside of the Netherlands, then a long-distance supplement of €15 is applied.

The tester adds the results to the conditions list:

Calculation of standard shipping costs
C1 Order = 200 capsules

C2 Form of payment = “Direct debit”
R1 Standard shipping costs := 0

R2 Standard shipping costs := 10

Calculation of long-distance supplement
C3 Distance < 50 km from Utrecht

C4 Country = The Netherlands

R3 Long-distance supplement ;=0

R4 Long-distance supplement ;= 5

R5 Long-distance supplement ;= 15

Now that both conditions and results are known, the decision table is filled in using
coverage type decision points: mulfiple condition coverage. This means: all possible
combinations of the values (0 or 1) of the separate conditions.

Example

Since the total number of conditions amounts to four, the tester has decided to include
these in one tables. The conditions list and the filling in of the tables according to multiple
condifion coverage produces the table below with test situations for the shipping costs
example:

Shipping costs calculation (test situations)

Std. shipping costs / Long- 1 2 (3|4 |56 |7 |89 |10(11|12[13 |14 | 15| 16
distance supplement

C1 Order 2200 capsules 0]01]0 0O|lO0O]O[OfO 1 1 1 1 1 1 1 1

C2 Form of payment = “direct 0O[0]|0]|O 1 1 1 1 1 1 1 1 0 0 0 0
debit”

C3 Distance < 50 km from Utrecht | 0 | O 1 1 1 1 0[0]O0 0 1 1 1 1 0 0
C4 Country = The Netherlands 0 1 1 0] 0 1 1 0|0 1 1 0 0 1 1 0
R1 Std. shipping cost :=0 X X X

R2 Std. shipping cost := 10 X | X | X[ X | X | X | X [X X X X X
R3 Long-distance supplement := 0 X | X | X[ X X X X X

R4 Long-distance supplement := 5 X X X X

R5 Long-distance supplement := X X | X X | X X X X

3 This is irelevant to the final number of combinations. Consider: in the shipping costs example, one table is
created with four conditions in total. This leads to one table with maximum 24 =16 combinations. In the example,
the table could be split into two tables (“Calculation of standard shipping cost” and “Calculation of long-
distance supplement”). Both tables would then consist of 22 = 4 test columns. Those, in combination with each
other, would give 4 x 4 =16 combinations. Since splitting or nor splitting the table makes no difference to the final
result, it is advisable to split tables with more than five conditions into several tables, since this makes the
individual tables clear and intelligible.

114




Shipping costs calculation (test situations)

Std. shipping costs / Long- 1 2| 3|4 |5 (6|7 |89 |10|1 |12|13 |14 |15
distance supplement

16

15

Reading a decision table is often considered to be difficult. Test situation 7, for example,
should be read as follows:

The customer has ordered fewer than 200 capsules AND has selected the “direct debit”
payment form AND the delivery address is 50 km or more from Utrecht AND the delivery
address is in the Netherlands. The shipping costs amount to €10 standard cost plus €5 long-
distance supplement, equals €15.

Filling in a table with ones and zeros can be done in many ways. The manner of doing so in
the above “Shipping costs calculation” table simplifies the creation of physical test cases
(see "In more detail” below for explanation).

In more detail

Note the clever way of filling in the “Shipping costs calculation” decision table. This causes
only one condition to change in value per column (referred to in the literature under the
name of: “Gray-code”). This is helpful for the creation of the physical test cases: copy and
paste and change one value. For the filling in, we begin at the bottom row of conditions
with one 0 followed by, consecutively, two times 1, two times 0 and so on until the last,
which is given the value 0. In the row second from the bottom, we begin with two times 0
followed by, consecutively, four times 1, four times 0, and so on until the last two, which are
given the value 0. We continue like this with the whole table; in every row the zero and
one sets are twice as long as in the previous row.

In more detail

Instead of filing in the decision table according to coverage type multiple condition
coverage, a (more elementary) variant could be chosen at the stage when the strategy is
being determined. This fechnique is applied both to the conditions and to the results. As
an example, the “shipping costs calculation” table has been filled in according fo
condifion/decision coverage:

Shipping costs calculation (test situations)

Std. shipping costs / long-distance supplement 1 2 11
C1 Order 2 200 capsules 0 0 1
C2 Form of payment = “direct debit” 0 0 1
C3 Distance < 50 km from Utrecht 0 0 1
C4 Country = The Netherlands 0 1 1
R1 St. shipping costs := 0 X
R2 St. Shipping cost := 10 X X

R3 Long-distance supplement := 0 X
R4 Long-distance supplement := 5 X

R5 Long-distance supplement := 15 X

With the three columns, all the possible outcomes of each condition and of each result
are covered af least once. The columns 1 and 11 cover all the conditions, and column 2 is
necessary to cover result 4 as well.

Several combinations of columns are possible that meet with the condition/decision
coverage (e.g. 3,92, 10and 2, 11, 16).

115




In more detail

Besides conditions that can only have the values of true or false, parameters also exist with
more than 2 possible values (i.e.: equivalence classes). Testing all combinations in that
case is a coverage type that belongs to the group Data — Data combinations (instead of
Conditions — Decision Points, or - like in the example below —in both groups):

* Add as many columns as there are possible equivalence classes, whereas the content
of the other rows of conditions does not change. Suppose that in the example there is a
choice of three forms of payment: direct debit, giro fransfer and cash. Then, as an
example, the ‘old’ test situation 1 would lead fo the following 3 ‘new’ test situations in
this approach:

Std. shipping costs / long-distance supplement 1 2 3
C1 Order 2 200 capsules 0 0 0
C2 Form of payment “direct “giro tr.” “cash”
debit”
C3 Distance < 50 km from Utrecht 0 0 0
C4 Country = The Netherlands 0 0 0
R2 St. Shipping cost := 10 X X X
RS Long-distance supplement := 15 X X X

2- Creating logical test cases

The test situations (columns) in step 1 now constitute the logical test cases. However, a
logical test case must not contain ‘mutually exclusive conditions’, since that would make
the test case inconsistent in itself, and therefore unexecutable. In the step from test
situations to logical test cases, any unexecutable test cases should be traced. These test
cases are marked “Not possible” in the table.

Example
In the shipping costs example, the conditions C3 and not-C4 exclude each other. There

are no foreign locations within a radius of 50 km from Utrecht. Therefore, 4 of the 16 logical
test cases are unexecutable, see the table below:

Shipping costs calculation (logical test cases

Std. shipping costs / long-distance | 1 2 (3| 4|56 |7 |89 |10(11|12[13 |14 |15 ]| 16
supplement

C1 Order = 200 capsules olo|lolo|lo|lo|loO]|oO 1 1 1 1 1 1 1 1

C2 Form of payment = “direct olololo 1 ] ] 1 1 1 1 1 0 0 0 0
debit”

C3 Distance < 50 km from Utrecht | o | o ] 1 1 ] (o I IO I IO 0 1 1 1 1 0 0
C4 Country = The Netherlands 0 1 ] ol o 1 1 01| 0 ] ] 0 0 1 1 0
R1 Std. shipping cost := 0 X | X X

R2 St. Shipping cost := 10 X | X | X X | X | X X [ X | X
R3 Long-distance supplement := 0 X X X X

R4 Long-distance supplement := 5 X X X X

R5 Long-distance supplement := X X | X X
15

Not possible X | X X X

Check for yourself that the logical test cases 4, 5, 12 and 13 are not executable.

For the logical test cases with the result of “Not possible”, no physical test case exists.
Ideally, these columns should not be removed, so that no misunderstanding can arise as to
why no physical test case is present for a particular logical test case.

116




3- Creating physical test cases

With a physical test case, all the data that play a part in the conditions are franslated into
concrete terms. To this end, the table of logical test cases can simply be adapted for
making the test cases physical. In the table of physical test cases, each numbered column
describes a physical test case and the last row(s) contain(s) the predicted result(s). For the
entries:

« The “0" orthe "1"is replaced in the table with a physical value
» The physical value is entered in the place of an “X".

A point of focus with the first bullet is that in the table of physical test cases, no conditions
remain, only data. A particular data attribute can occur in several conditions. In logical
test cases, they occurin several rows, while that particular data naturally only occurs once
in the table for physical test cases. Besides this, it is possible that additional refinements are
required. For example, by putting derived data info concrete terms (see example below).

Example

For the creation of physical test cases, the “Place of delivery” has to be derived from
“Distance from Utrecht”. This delivers the table 14.8 (as an example, 8 of the 12 logical test
cases are shown):

Shipping costs calculation (physical test cases

1 2 é 7 9 10 11 16
Number of capsules 199 199 199 199 200 200 200 200
Form of payment cash cash dir.dbft. dir.dbt. dir.dbf. dir.dbft. dir.dbt. cash
Distance from Utrecht 178 182 10 182 178 182 10 178
Place of delivery Brussel | Heerlen Zeist Heerlen | Brussel | Heerlen Zeist Brussel
Country B NL NL NL B NL NL B
St. shipping cost 10 10 10 10 0 0 0 10
Long-distance suppl. 15 5 0 5 15 5 0 15
Total shipping costs 25 15 10 15 15 5 0 25

The logical test cases 4, 5, 12 and 13 are not executable and can therefore not be made
physical.

In more detail

The decision table test can be made even more thorough by the applying boundary
value analysis. This option is included as an extra conditfion in the creation of the logicall
test cases. In the example, this condition could be included in respect of the number of
capsules and the distance. The requirement then is that for the “number of capsules” at
least the values of 199, 200 and 201 should occur (e.g. in columns 9, 10 and 11) and for
“distance” at least the values of 49, 50 and 51 (e.g. in columns 1, 2 and 7).. The number of
test cases does not change with this approach.

Another possibility is to include a separate column for each value. This is a thorough
method that tests all the combinations, but it is labor-intensive. The number of test cases
increases with this approach.

4- Establishing the starting point
No remarks.

117



Example

The customer’s details that are relevant to the placing of an order should be present in the
information system.

3.7.7 Elementary Comparison Test (ECT)

Characteristics

Approach Coverage based — conditions

19e t;::{l/tzr;:el;;:racterlshc / « Functionality
» Detailed functionality
+ Thorough coverage of decision points
» Not: combining functional paths

SovEER e + Decision points: Modified Condition / Decision
Coverage

UeBrHeEk « Decision tables, pseudo-code, a process description or
other (functional) descriptions that contain conditions
and decision points

Description

The elementary comparison test (ECT) is a thorough technique for the detailed testing of
the functionality. The necessary test basis is pseudo-code or a comparable specification in
which the decision points and functional paths are worked out in detail and structurally.
The ECT aims at thorough coverage of the decision points and not at the combining of
functional paths. The coverage type used here is:

« Decision points: Modified Condition / Decision coverage

Variations on the ECT can be created by the application of the following coverage types:

» Decision points: Multiple Condition coverage
With this, the possibilities within the decision points (specifically selected, if
necessary) can be tested more thorough.

« Decision points: Condition coverage up to and including Condition / Decision
coverage
With this, the possibilities within the decision points (specifically selected, if
necessary) can be tested less thorough.

+ Boundary value analysis
With this, the possibilities within the decision points (specifically selected, if
necessary) can be tested more thorough.

* Pairwise testing
With this, the testing of possible combinations of functional paths is added.

This technique will mainly be chosen for testing functions and/or complex calculations
considered to be very important.

Points of focus in the steps

In this section, the decision table test is explained step by step, taking the generic steps as
a starfing point (see section 3.2.2. The generic test design steps). An example is used at
every step to show how this tfechnique works.

118



Example

In this example, we take a funcftion (task) in which the data referring to the car owner are
enfered in a screen and subsequently, upon request, a calculation is made of the
premium that the car owner should pay for his vehicle insurance. Depending on a number
of variables, the level of the premium is established. The pseudo-code below gives a
detailed functional description of this:

IF age < 18 years OR driving licence suspended
THEN error message
ELSE IF age < 25 years AND years holding driving licence < 3
THEN premium := 1500
ELSE premium := 800
ENDIF
IF carage <2 OR (carage =5
AND damage in last 3 years = 2500)
ORage 270
THEN increase premium by 500
EINDIF
EINDIF

It is set out per step below how the elementary comparison test is applied to this function.

1- Identifying test situations

The test basis consists of pseudo-code or a comparable formal function description which
can be copied directly in this step. If not, an exira activity should be carried out in order to
convert the existing specifications info pseudo-code.

The decision points in the pseudo-code are provided with unique identification. It is usual
to use the codes D1, D2, etc. for this (or DO1, D02, etc. if there are many decision points).

119



Example

There are three decision points, which are identified below:

This decision point and the

next one are ‘nested’ in the
first decision point

D1 IF age < 18 years OR driving licence suspended
THEN error message
D2 ELSE IF age < 25 years AND years holding driving licence < 3
THEN premium := 1500
ELSE premium := 800
ENDIF
D3 IF carage <2 OR (car age 25
AND damage in last 3 years = 2500)
OR age 270
THEN increase premium by 500
EINDIF
EINDIF

D2 and D3 are ‘nested’ decision points. Which means that getting to these decision points
depends on the result of a previous decision point. In this case, D2 and D3 are only
reached if the outcome of D1 is false.

Per decision point, the coverage type Decision points: MCDC (modified
condition/decision coverage) is applied. The resulting test situations are numbered. The
combination of this number and the decision point provides a unique identification of the
test situations (such as D1-1, D1-2, efc.). The numbering begins with the fest situations from
column “1” (True) and then from the column “0” (False).

For each decision point, the test situations are worked out in detail in a separate table. The
rows of the table contain the data or parameters that occur in the conditions of the
decision point. A column then indicates which requirements are set on each parameter
for the relevant test situation.

120



Example

D1 |IF age < 18 years OR driving licence suspended
THEN error message
ELSE Indicates the outcome (which
may imply going to the next
D1 1 0 decision point)
AORB error message (D2)
A: age < 18 10 (1-1) 00 (1-3)
B: driving licence 01 (1-2) 66
suspended
D2 |F age < 25 years AND years holding driving licence <3
THEN premium := 1.500
ELSE premium := 800
D2 1 0
AANDB Premium= 1500 | premium= 800
A: age< 18 11 (2-1) |01 (2-2)
B: years holding driving —+— 10 (2-3)
licence < 3
D3 |IF carage <2 OR (carage 25
AND damage in last 3 years = 2500)
ORage 270
THEN increase premium by 500
D3 1 (1]
AOR (BANDC)ORD premium + 500
A: carage < 2 1010 (3-1) 0010 (3-4)
B: carage =25 0110 (3-2) 0010
C: damage in last 3 years |-84+—21-0- 66 (3-5)
> 2500
D: age = 70 0101 (3-3) o6

NB!'In D3, the combination “A = true and B = frue” gives a logical contradiction and
therefore may not occur in the test situations: Car age should be simultaneously lower
than 2 and higher than, or equal to, 5. This contradiction would otherwise show up when
the fest cases are made physical.

Detailed working out of the derived test situations:

121



D1 IF age < 18 years OR driving licence suspended

THEN error message

ELSE

D1 1 (1]

AORB error message (D2)

A: age < 18 10 (1-1) 00 (1-3)
B: driving licence 01 (1-2) 166
suspended

4

D1 D1-1 D1-2 D1-3

Age <18 =18 =18

Driving licence suspended | N Y N
D1 D1-1 D1-2 D1-3
Age <18 > 18 > 18
Driving licence suspended | N Y N
D2 D2-1 D2-2 D2-3
Age <25 > 25 < 25
years holding driving <3 <3 >3
licence
D3 D3-1 D3-2 D3-3 D3-4 D3-5
Car age <2 > 2 >2 =2 >2
Car age <5 >5 >5 <5 =5
Damagein last 3 years = 2500 = 2500 < 2500 = 2500 < 2500
Age <70 <70 =70 <70 <70

NB! The parameter “Age” occurs in the decision points D1, D2 and D3. This leads to the
following mutually exclusive test situations: D2-1 with D3-3; D2-3 with D3-3.

122



2- Creating logical test cases

A test case runs through the functionality from start to end and will come across one or
more decision points on its path. With each decision point, the test case will test one of the
defined test situations.

The logical test cases are combined with the aid of a matrix.

In order to take account of the nesting of decision points, the columns “Value” and “Next”
are added. These indicate for each test situation what the outcome of the decision is
(directly obtainable from the tables in step 2) and to which subsequent decision point (or
end process) this leads. This helps to prevent the tester from placing a cross at a test
sifuation where the test case does not go. This can also be achieved by using a Graph
(see below).

Graphic demonstration of test situations

For some testers, the creation of logical test cases is made easier with the aid of a graphic
demonstration of the test situations — a Graph.

With this, each decision point and end point is represented by a circle and each test
situation by a line that goes from one circle to another.

A logical test case runs through the graph from beginning to end, linking a chain of test
situations. The graph also supplies insight intfo the minimum number of test cases necessary
to cover all the test situations. This is determined by the maximum number of parallel lines
in the graph.

123



Example

licence

D1 1 0

AORB error message (D2)

A: age < 18 10 (1-1) 00 (1-3)
B: driving licence 01 (1-2) -

suspended

D2 1 o0

A AND B premium= 1500 premium=800
A: age < 18 11 (2-1) 01 (2-2)
B: years holding driving +—+ 10 (2-3)

124

A circle for each decision
point plus a circle for ‘End”

Each test situation is drawn
as a line, leading to its
destination



D3 1 0

AOR (BAND C)ORD Premium + 500

A: carage <2 1010 (3-1) 0010 (3-4)
B: carage = 5 0110 (3-2) |66+6

C: Damage in last 3 years > ++6- 0100 (3-5)
2500

D: age = 70 0101 (3-3) |B+646

Estimate the minimum
number of test cases:
the maximum number of
parallel lines

Mutually exclusive test situations

Each test situation sets particular requirements on one or more parameters. If a parameter
occurs in several decision points, it is possible that a test situation in one decision point sets
requirements on that parameter that conflict with the requirements of a fest situation in
another decision point. For example, test situation D2.1 requires “Age < 25" and test
situation D3.3 requires “Age 2 70". These test situations are mutually exclusive.

A logical test case can not contain “mutually exclusive test situations”, for that makes the
test case inconsistent and therefore unexecutable. Such a test case will be discovered
automatically, as soon as the test case has to be made physical (see next step). The
problem can then be simply resolved, by replacing one of the “mutually exclusive test
situations” with a non-conflicting test situation. In this connection, it can be advantageous
to first franslate each logical test case into a physical test case in order to discover possible
mutually exclusive test situations, before starting on the following logical test case.

In order to prevent test cases from occurring, that contain mutually exclusive test
situations, an extra analysis should be carried out in advance:
* Inventorize which parameters occur in several decision points, and (per
parameter) which decision points they are
¢ Sum up the combinations of mutually exclusive test situations.

125



Example

D1 D1-1 D1-2 |D1-3

Age <18 > 18 > 18

Driving licence N Y N

suspended

D2 D2-1 D2-2 | D2-3

Age > 25 <25

Years holding <3 <3 >3

driving licence

D3 D3-1 |D3-2 |D3-3 |[D3-4 |D3-5
Car age <2 =2 >2 >2 > 2
Car age <5 =5 =5 <5 >5
Damagein last 3 > > < > <
years 2500 | 2500 2500 | 2500 | 2500
Age <70 <70 <70 <70

Excluding: 2-1 and 3-3

126




Excluding: 2-3 and 3-3

1-1 and 2-2 are not mutually
excluding since 1-1 directly

goes to the end and does not
pass 2-2

D1 D1-1 D1-2 |D1-3

Age <18 > 18 > 18

Driving licence N Y N

suspended

D2 D2-1 D2-2 |D2-3

Age <25 > 25

Years holding <3 <3 >3

driving licence

D3 D3-1 |[D3-2 |D3-3 |D3-4 |D3-5

Car age <2 > 2 >2 =2 =2

Car age <5 >5 >5 <5 =5

Damagein last 3 > > < > <

years 2500 | 2500 2500 | 2500 | 2500

Age <70 |<70 |0 <70 |<70

D1 D1-1 D1-2 |D1-3

Age , <18 > 18 > 18

Driving licence N Y N

suspended

D2 / |p2-1 |D2-2 |D2-3

Age / <25 |225 [<25

Years ho|di;}{ <3 <3 |23

driving licence

/ /

p3 / B3-1 |D3-2 |D3-3 |D3-4 |D3-5

Car age/ /<2 22 J22 |22 |22

Car afe / <5 =5 =5 <5 =5

Dar?ége irys/t 3 > > < > <

years 2500 | 2500 2500 | 2500 | 2500
<70 <70 =70 <70 <70

Combining test situations to logical test cases

The final step in creating logical test cases is to combine the test situations to logical test
cases, in such a way that every test situation is covered by at least one logical test cases.

This is done with the aid of a matrix, faking info account the mutually exclusive test

127




situations. The rows contain the test situations and the columns contain the logical test
cases. With each test case, it is indicated by one or more crosses which test situations
should be tested by this test case. This matrix simultaneously serves as a check on the
complete coverage of test situations.

Example

-trjgiizlns Value ~| Next DUl dife el 617 ) ity
Di-1 1 Eqd taking the exclusions into
account
D1-2 |1 End~.
Di1-3 [0 D2
D2-1 1 D3
D2-2 |0 D3
D2-3 |0 D3 The result of the test
D3-1 |1 End situation
D3-2 1 End
D3-3 1 End
D3-4 |0 End
D3-5 |0 End
Exclusions
D2-1 with D3-3
D2-3 with D3-3
Test si- TC-| TC-| TC-| TC-| TC-| TC-| TC-
tuationg Value | Next 1/ 2] 3|]4|5|6]|7
D1-1 1 End X
D1-2 1 End X
D1-3 [0 D2 X[ X[X X| X
D2-1 1 D3 X
D2-2 |0 D3 X X
D2-3 [0 D3 X X
D3-1 1 End X
D3-2 1 End X
D3-3 1 End X
D3-4 [0 End X
D3-5 |0 End X
Exclusions
D2-1 with D3-3
D2-3 with D3-3

128



If necessary, every logical test case can be elaborated further.

D2-2 | D2-3
>25 | <25
<3 >3

Example

Test si- Test case TC-4

tuations TC-4 Test situations D1-3

D1-1 D2-1

D1-2 D3-1

D1-3 X Age > 18 and < 25

D2-1 X Licence suspended | N

D2-2 Years licence <3

D2-3 Car age <5

D3-1 X Damage 3 yrs > 2500

D3-2 Result:

D3-3 Error message -

D3-4 Premium 2000

D3-5

D1 D1-1 | D1-2 Mk i) D2

Age <18 > 18 [Nk Age

Licence suspended N Y N Years licence
D3-2 D3-3 D3-4 D3-5

Car age =2 =2 >2 >2
>5 >5 <5 >5

Damage 3 yrs > 2500 < 2500 > 2500 < 2500
<70 >70 <70 <70

Since these are logical test cases, the values are still at a logical level. Please note that
Age occurs in D1, D2 and D3. So age has to comply with the values in D1-3, D2-1 and D3-1,
and therefore must be =2 18 and <25.

3- Creating physical test cases

With a physical test case, all the parameters (data) have to be given concrete substance,
so that the relevant test situations are covered by this.

Physical test cases can be handily described with the aid of a matrix that is built up as

follows:

Each column describes a physical test case.
The first row indicates per test case which test situations should be covered.
Thereafter, there is a row for each parameter of which the test case consists.
Finally, one or more rows are added with which the predicted result is described in

concrete terms.

4- Establishing the starting point

No rem

arks.

5- Creating the test script

No rem

arks.

129



3.7.8 Data Cycle Test (DCyT)

Characteristics
Approach Coverage based - data and conditions
?e t;::llltzr;:el;;:racterlshc / « Overarching functionality
+ Suitability
+ Connectivity
SB[ 20 « CRUD (for covering the life cycle of data)
« Decision points: Decision Coverage (for covering
integrity rules)
Test Basls - CRUD matrix
+ Functional description
Description

The data cycle test (DCyT) is a technique for testing whether the data are being used and
processed consistently by various functions from within different subsystems or even
different systems. The fechnique is ideally suited to the testing of overall functionality,
suitability and connectivity.

The primary aim of the data cycle test is not to trace functional defects in individual
functions, but to find integration defects. The test focuses on the link between various
functions and the way in which they deal with communal data. The DCyT is most effective
if the functionality of the individual functions has already been sufficiently tested. That is
also an important reason why this test is usually applied in the later phases of acceptance
testing.

The most important test basis is the CRUD maitrix (see section 3.5.6) and a description of the
applicable integrity rules. The latter describe the preconditions under which certain
processes are or are not permitted, such as, for example, “Enfity X may only be changed if
the linked entity Y is removed from it”. Besides this, functional specifications or detailed
domain expertise is necessary in order to be able to predict the result of each test case.

The coverage types used are:
» CRUD, for coverage of the life cycle of the data
« Decision coverage, for coverage of the integrity rules.

The test intensity of the test can be increased by applying e.g.:

¢ amore extended variant of CRUD

¢ Modified condition/decision coverage or multiple condition coverage of the integrity
rules.

Points of focus in the steps

In this section, the data cycle test is explained step by step. In this, the generic steps (see
section 3.3.2) are taken as a starting point. An example is also set out that demonstrates,
up to and including the designing of the logical test cases, how this tfechnique works.

1- Identifying test situations

The test situations are created from the coverage of the CRUD and from the integrity rules.
Both will be further explained here.

130



Test situations in connection with CRUD
The following activities should be carried out:

. Determine the entities of which the life cycle is to be tested.
Usually, this concermns all the entities that are used by the system or subsystem
(created, changed, read or removed). If there are too many entities, a cohesive
subset of entities may be selected

. Determine the functions that make use of these entities.
Here, too, the scope of the test should be determined: all the functions of the
system under test, a cohesive subset of this, functions from other systems that are
linked to the system under test

. Fill in the CRUD matrix (see section 3.5.6).
If the CRUD matrix is delivered as a test basis, the relevant part should be selected
from this, based on the previous two activities. If it was not possible to get the CRUD
matrix delivered as a test basis, the test team may decide to create this
themselves, based on the functional specifications. This is obviously undesirable, but
is a last resort

. Each process (C, R, U or D) that occurs in the CRUD matrix is a separate test
situation that has to be tested.

Test situations in connection with integrity rules
The following activities should be carried out:

e Gather the integrity rules on the selected entfities.
These are the rules that define under which conditions the processing of the entities is
valid or not. Integrity rules are usually specified within the functional specifications,
database models or in separate business rules.

e Apply decision coverage. That means that for each integrity rule, two test situations

are derived:

* Invalid
The integrity rule is not met. The process is invalid and should result in correct error
handling.

 Valid

The integrity rule is met. The process is valid and should be executed.
In more detalil
Integrity rules should not be confused with semantic rules, which define the conditions
under which the value of the data themselves is valid or not. For example:

« The rule "When creating an order, the value of quantity should not be below the
boundary that is set in product” —is a semantic rule

« The rule "The creation of an invoice is only permitted if the order concerned has
already been approved” —is an integrity rule.

Therefore, the integrity rule determines whether the function is permitted in the first place.
Thereafter, the semantic rules determine whether the input data offered to that function
are valid.

Example

The data cycle test is applied to a subsystem that invoices orders and processes
payments. The relevant part of the CRUD maitrix is shown in the table below.

131



ltem Payment Invoice Ledger
agreement

ltem management C.R.UD - -
Payment agreement - C.R,UD R
management
Ledger management - - R C,R,U,D
Invoice creation R R @ U
Cash payment - - C,U,D U
Bank transfer - - U,D U

For this part of the CRUD matrix, there is one relevant integrity rule: A payment agreement
may not be removed as long as there is an outstanding invoice with the relevant payment
agreement.

This leads to two test situations:

IR1-1: Delete (D) payment agreement, while an invoice is outstanding with the relevant
payment agreement

IR1-2: Delete (D) payment agreement, without there being an outstanding invoice with
the with the relevant payment agreement

A brief overview notation for this type of test situation is, for example:

Test situation Process Entity Condition Valid Y/N
IR1-1 D Payment agreement outstanding invoice N
IR1-2 D Payment agreement no outstanding invoice Y

The initials “IR" here stand for “Integrity rule”.

2- Creating logical test cases
Create 1 or more logical test cases in such a way that:

» Each entity goes through a full life cycle (beginning with ‘C" and ending with ‘D’)
e All the test situations from the CRUD maitrix (every C, R, U and D) are covered

« All the test situations of the relevant integrity rules are covered.

See also section 3.5.6 and section 3.5.7.

A test case thus describes a complete scenario consisting of several actions, each of
which perform a process on a particular enfity.

132



Example

In the two tables below the logical test cases for the entities “lItem” and “Payment
agreement” are set out, fo illustrate the principle.

The table describe at each row which function should be used, which process (CRUD) on
the relevant entity is covered by this and a brief explanation with additional information on
the action to be performed.

LTC-01: “ltem”
Function CRUD | Action / Notes
lfem management C Create new item ITM
lfem management R Check ITM
Create invoice R Create invoice INV
Ledger management - Check INV
lfem management u Change ITM
lfem management R Check ITM
Ledger management - Check INV
lfem management D Remove ITM
lfem management R Check ITM

LTC-02: “Payment agreement”

Function CRUD | Action / Notes
Payment agreement mgt. (@ Create new payment agreement PAG
Payment agreement mgt. R Check PAG
Payment agreement mgt. U Change PAG
Payment agreement mgt. R Check PAG

Create invoice R Create invoice INV
Ledger management - Check INV
Payment agreement mgt. D IR1

Payment agreement mgt. R Check PAG

Cash payment - Full payment of INV
Payment agreement mgt. D IR1

Payment agreement mgt. R Check that PAG

A “-"in the column “CRUD" means that the relevant function is required in order to carry
out a certain action, but that this does not perform any processing on the tested entfity. For
example:

With LTCO1, “Ledger management” is used to be able to check that the correct item
appears on the invoice, but does not perform any processing itself on “ltem”.

With LTC02, “Cash payment” is used to close invoice INV 02 so that integrity rule IR1-2 is
complied with, but does not perform any processing itself on “Payment agreement”.

133



3- Creating physical test cases

In the franslation of logical test cases to physical test cases, the following details are
added:

+ (Optional) Exactly how the relevant function is activated. This is usually clear enough,
but sometimes it requires a less obvious sequence of actions.

« The data to be entered with that function. If the logical test case indicates that a
certain entity has to be changed, then the physical test case should indicate
unequivocally which attribute is changed into which value.

* A concrete description with each predicted result of what has to be checked
concerning a particular entity.

e Extra actions that are necessary to facilitate subsequent actions in the test case. E.g.,
the changing of the system date or the execution of a particular batch process in
order to give the system a certain required status.

4- Establishing the starting point

The DCyT typically operates at overall system level, possibly across several systems. That
means an extensive starting point has to be prepared that is complete and consistent
across all the systems. The following, in particular, should be organized:

* All the necessary databases for all the systems involved, in which all the data is
consistent

« A configuration (possibly a network) in which all the necessary systems are connected
and in which all the necessary users are defined with the necessary access rights.

Such a starting point approximates the production situation and is complicated to put
together. Ideally, an existing real-life test environment is used. See also section 4.3, under
“Specification Phase": “Defining central starting point(s)".

In particular, attention should be paid to the data in the starting point that are only valid
for a limited period of time. At the start of each test execution, it should be checked
whether these time-dependent data are still valid and whether, on the basis of this,
changes should be made in the starting point.

134



3.7.9 Real-Life Test (RLT)

Characteristics
Approach Coverage based - Appearance
'I'Qe:?I\IIZr;:el;;”GCte"s“C / . Usability

+ Connectivity

+  Continuity

+ Performance
SB[ 20 « Operational profiles: sequence of fransactions

« Load profiles: numbers of users and/or transactions
U LLES « 'Profiles’ = description of realistic usage
Description

With the real-life test (RLT), it is not the intention to test the system behaviour in separate
situations, but to simulate the realistic usage of the system in a statistically responsible way.
This test mainly focuses on characteristics, such as effectivity, connectivity, continuity and
performance of the system under test. Many defects that are found with a real-life test are
connected with a system’s use of resources:

« Crashing of transactions following lengthy use

e Crashing of transactions that are carried out in a particular sequence
¢ Inadequate response times and speed of processing

« Insufficient memory or storage space available

+ Insufficient capacity of peripherals and data-communication network.

To be able to test whether a system can handle realistic usage of it, that usage should be
somehow specified. This also serves as a test basis and, in this context, is often referred to
as the profile. The two most common types are:

« Operational profile
Simulation of the realistic usage of the system, by carrying out a sequence of
transactions, which is compiled in a statistically responsible way (see section 3.6.4).

* Load profile
Simulation of a realistic loading of the system in terms of numbers of users and/or
fransactions (see section 3.6.3).

In practice, in a real-life test a mix of these profiles is often used. A particular loading of the
system is simulated by carrying out realistic scenarios.

A profile is used in the setting out of one or more test goals of the real-life test. Examples of
test goals are:

» Testing with normal or average usage
The aim here is to examine whether the available system resources are sufficient for the
usual circumstances. This often involves a test with an average number of users who
carry out interactive work, run overviews and carry out a number of small batch
functionalities.

e Testing with infensive usage
The aim here is to examine whether there are sufficient system resources for even the
most stressful, but realistic, circumstances. This often involves a fest with a maximum

135



number of users who carry out interactive work (peak loading) or a test in which certain
fransactions are carried out often and at length.

* Measuring the breaking point (stress testing)
The aim here is to examine what the maximum load is under which the system will sfill
perform to an acceptable level. This often involves a test with an increasing number of
(simulated) users.

» Testing daily batches
The aim here is to examine whether the available system resources are sufficient for the
combination of a normal number of interactive users with the simultaneous execution of
relatively demanding batch jobs.

« Testing nightly batches
The aim here is to examine whether both the available system resources and the
available time are sufficient for the (nightly / weekend) execution of big batch jobs.

Execution of the real-life test is usually more complicated than that of other tests. In an
environment in which the number of end users is not too great, you can have everyone
work overtime for a weekend and carry out a previously established test scenario.
However, use is increasingly being made of tools that simulate a redlistic load in various
ways. These are tools that simulate, for example, the number of users through the creation
of virtual users, or tools that simulate a particular loading of the back-end of the system by
offering transactions directly via the database management interface (hence without the
use of the front-end or network).

It should be clearly determined in advance what and how measuring is fo be done during
the real-life test. Sometimes the measuring in itself also puts demands on the system, which
can lead to distortion of the results. On the other hand, sufficient data is required to be
able to carry out a satisfactory analysis in retrospect.

It can sometimes be difficult to assess the results of a real-life test. Occasionally, tests are
not reproducible, because defects are often found that are caused by insufficient
memory, lengthy use, etc. These kinds of defects (e.g. memory leaks) are difficult to
reproduce, because there are almost always outside influences at play, which are
impossible, or almost impossible, to control, such as the memory management of the
operating system. In fracing the causes of any defects, logging and monitoring facilities
could be used.

Points of focus in the steps

For the real-life test, the creation or establishing of correct profiles is the most important
step. This takes place within step 1 “Identifying test situations”. The exact content of the
test cases is less relevant than with most other test design techniques. The most important
criterion is that reality regarding the size and frequency of use is approximated as closely
as possible. This means that there is usually no point in creating logical test cases. The
physical translation can often be made immediately to cover the required test situations.

1- Identifying test situations

The profiles can be seen as the situations to be tested. These indicate along general lines
which types of actions (functions) are carried out over a particular period and the number
of active users. This may be a number of daily cycles, e.g. a minimum, average and
maximum cycle. A daily cycle consists, for example, of logging on, intensive use, lighter
use during the lunch break, intensive use, logging out, backup and daily batches. Besides
these, there could also be comparable weekly, monthly and annual cycles and specific
processes, such as backup and recovery. There are various ways of obtaining the

136



necessary information for the creation of an operational profile, load profile or a mix of
these. Below are a number of them in random order:

» Derive the profile from the current system or release

+ Copy an existing profile of a system with comparable functionality

e Copy an existing profile with comparable load of the system resources
» Log how often each function is used

¢ Measure the load of the system with the aid of specific tools (monitors)

« Interview users, in which the key question is: “Which transactions do you carry out, how
often and when, or which transactions do you expect to carry out on the new system?e”

An important consideration in creating a profile is the degree of detail. A more extensive
and detailed profile will of course give a better reflection of reality, but will also lead to an
increase in the testing effort for the specification and realization of test cases and the
execution of the real-life test.

It should be ensured that in the profile all the system resources are used realistically. It is
pointless to simulate significantly heavier usage than is usual in reality, as the result of such
a test will tell us nothing. If, for example, the system is too slow under those circumstances,
it does not mean that the system is unsatisfactory. If the system is not too slow, that only
tells us that it is over-configured, but not by how much. Simulating significantly heavier
usage is useful, of course, if the aim of the test is test is to determine the maximum load
under which the system still performs acceptably.

Example
In an organization that processes bank transactions for various banks, 275,000 fransactions

are processed per hour with normal usage. These are divided info fransaction types as
follows (see the table):

Transaction type Frequency(#/hr) Relative frequency
Point of Sale transactions 150,000 0.55
Direct debits 90,000 0.33
ATM transactions 20,000 0.07
Credit transfers 15,000 0.05
Total 275,000 1.0

The test cases are realized to correspond with the tasks and the relative frequency. For the
example, this means the following spread across the test cases: 55% point of sale
transactions, 33% direct debits, 7% ATM fransactions and 5% credit transfers.

Possible aims of the test are:

e Whatis the maximum number of transactions that can be processed per second?

e Whatis the average lead-time of a tfransaction under normal or intensive usage, and
does this fall within the agreed limitse

e |s the system proof against lengthy uninterrupted use?

2- Creating logical test cases

Since the Real-Life Test is not about testing system usage in separate situations, logical test
cases are usually not created. Creation of the physical test cases is started immediately.

3- Creating physical test cases

For the real-life test, the exact content of the physical test cases is less relevant than for
most other test design fechniques. The only criterion is that reality regarding size and

137



frequency of use is approximated as closely as possible. This sounds easier than it actually
is. It has to be carefully considered how a particular usage or loading of the system can be
realized or simulated. Additionally, test cases should be gathered or created for some
tests, which have then to be carried out with the test execution. In contrast, in the
execution of other tests the system has to be prepared with content in advance.

The creation of test cases can be done, for example, by physically setting out user
scenarios, or, if an operational system already exists, by ‘tapping’ a representative test set.

For the testing of particular aspects of the system usage, the test cases can be realized by
preparing a daily production (after processing) as real-life input. When using production
data, bearin mind the privacy aspects. The devised user scenarios and actions that form
part of the real-life test should also be distributed as realistically as possible among the
users (testers) participating in the test.

The use of a tool, for example to simulate users or transactions, does not mean that user
scenarios not need to be worked out. Even when a tool is used, these user scenarios form
the basis of the test. In addition, the tool will have to be programmed or set so that it can
carry out the user scenarios.

Example

In the example of the fransaction processing, the following physical features have been
given to the point of sale transactions (see the table):

Nr Transaction type Parameters” Goal and expectation

1 Point of sale Let number of transactions in Determine breaking point
tfransactions 90 minutes rise from 5 tr/sec to | (stress test). Expectation: =2 350

450 fr/sec. fr/sec.

2 Point of sale 42 tr/sec Determine lead time of a
tfransactions (over 5 minutes) fransaction with normal use

3 Point of sale 120 tr/sec Determine lead time of a
fransactions (over 5 minutes) fransaction with intensive use

With test cases 2 and 3, besides the point of sale transactions, the fixed system load consists of
25 direct debits/sec, 5 cash withdrawals/sec and 4 credit transfers/sec. The transaction should
be carried out to 95% < 5sec, 1o 99% < 7 sec and to 100% < 10 sec.

4 Point of sale 42 tr/sec Test whether the system
tfransactions (over 7 days) crashes with lengthy use
The point of sale transactions amount to an average of €100.00 and are spread over 4 banks.

*

4- Establishing the starting point

As with most other tests, the creation of an appropriate starting point for a real-life test is
often a challenge. However, with the real-life test, often there are additional points of
focus:

+ The test environment should be representative of the production situation
« Sizeable files are used

e Many users (testers) perform the testing

e A ‘redl’ network should be available.

5- Creating the test script
No remarks.

138



Chapter4  TMap NEXT info

4.1 Whatis testing?

While many definitions of the concept of testing exist, one way or another they all contain
comparable aspects. Each of the definitions centers on the comparison of the test object
against a standard (e.g. expectation, correct operation, requirement). With this, it is
important to know exactly what you are going fo test (the test object), against what you
are going fo compare it to (the test basis) and how you are going to test it (the test
methods and fechniques).

The International Standardisation Organization (ISO) and the International Electrotechnical
Commission (IEC) apply the following definition [ISO/IEC, 1991]:

Definition

Technical operation that consists of the determination of one or more characteristics of a
given product, process or service according to a specified procedure.

Testing supplies insight in the difference between the actual and the required status of an
object. Where quality is roughly to be described as ‘meeting the requirements and
expectations’, testing delivers information on the quality. It provides insight into, for
example, the risks that are involved in accepting lesser quality. For that is the main aim of
testing. Testing is one of the means of detection used within a quality control system. It is
related to reviewing, simulation, inspection, auditing, desk-checking, walkthrough, etc. The
various instruments of detection are spread across the groups of evaluation and festing:

e Evaluation : assessment of products without running software.

» Testing : assessment of products by means of running the software.

Put bluntly, the main aim of testing is to find defects: testing aims to bring fo light the lack in
quality, which reveals itself in defects. Put formally: it aims to establish the difference
between the product and the previously set requirements. Put positively: it aims to create
faith in the product.

The level of product quality bears a relationship o the risks that an organization takes
when these products are putinto operation. Therefore, in this book we define testing,
according to TMap, as follows:

Definition

Testing is a process that provides insight intfo, and advice on, quality and the related risks.

Advice on the quality of whate Before an answer to this can be given, the concept of
quality requires further explanation. What, in fact, is quality?

Definition

The totality of features and characteristics of a product or service that bear on its ability to
satisfy stated or implied needs [ISO, 1994].

In aiming to convert ‘implied needs’ into ‘stated needs’ we soon discover the difficulty of
subjecting the quality of an information system to discussion. The language for discussing

139




quality is lacking. However, since 1977, when McCall [McCall, 1977] came up with the
proposal to divide the concept of quality info a number of different properties, the so-
called quality characteristics, much progress has been made in this area.

Definition

A quality characteristic describes a property of an information system.

A well-known set of quality characteristics was issued by the ISO and IEC [ISO 9126-1, 1999].
In addition, organizations often create their own variation of the above set. For TMap, a set
of quality characteristics specifically suited to testing has been compiled, and these are
listed and explained in chapter 10, “Quality characteristics and test types”. This set is the
one that is used within the framework of this book.

What, then, is the answer to the question: “Advice on the quality of whate”

Since, where quality is concerned, the issue is usually the correct operation of the software,
testing can be summed up as being seen by many to mean: establishing that the software
functions correctly. While this may be a good answer in certain cases, it should be realized
that testing is more than that. Apart from the software, other test objects exist, the quality
of which can be established. That which is tested, and upon which quality
recommendations are subsequently given, is referred to as a test object.

Definition

The test object is the information system (or part thereof) to be tested.

A test objects consists of hardware, system software, application software, organization,
procedures, documentation orimplementation. Advising on the quality of these can
involve — apart from functionality — quality characteristics such as security, User-friendliness,
performance, maintainability, portability and testability.

Pitfalls

In practice, itis by no means clear to everyone what testing is and what could or should

be tested. Here are a few examples of what testing is not:

« Testing is not a matter of releasing or accepting something. Testing supplies advice on
the quality. The decision as regards release is up to others (stakeholders), usually the
commissioner of the test.

« Testing is not a post-development phase. It covers a series of activities that should be
carried out in parallel to development.

« Testing is something other than the implementation of an information system. Test results
are rather more inclined to hinder the implementation plans. And it is important to have
these — often closely related - activities well accommodated organizationally.

« Testing is not infended initially fo establish whether the correct functionality has been
implemented, but to play an important part in establishing whether the required
functionality has been implemented. While the test should of course not be discounted,
the judgment of whether the right solufion has been specified is another issue.

« Testingis not cheap. However, a good, timely executed test will have a positive
influence on the development process and a qualitatively better system can be
delivered, so that fewer disruptions will occur during production. Boehm demonstrated
long ago that the reworking of defects costs increasing effort, time and money in
proportion to the length of time between the first moment of their existence and the
moment of their detection [Boehm, 1981]. See also “What does testing delivere” in the
next section.

140




e Testing is not training for operation and management. Because a test process generally
lends itself very well to this purpose, this aspect is often too easily included as a
secondary request. Solid agreements should see to it that both the test and the fraining
will be qualitatively adequate. A budget and time should be made exclusively
available for the fraining, and agreements made as regards priorities, since at certain
times choices will have to be made.

It is the task of the test manager, among others, to see that these pitfalls are avoided and
to make it clear to the client exactly what testing involves.

4.1.1 What is structured testing?

In practice, it seems that testing is still being carried out in an unstructured manner in many
projects. This section, besides citing a number of disadvantages of unstructured festing
and advantages of structured testing, also cites a few characteristics of the structured
approach.

Disadvantages of unstructured testing

Unstructured testing is typified by a disorderly situation, in which it is impossible to predict
the test effort, to execute tests feasibly or fo measure results effectively. This is often
referred to as ‘ad hoc testing’. Such an approach employs no quality criteria in order to,
for example, determine and prioritize risks and test activities. Neither is a test-design
technique employed for the creation of fest cases. Some of the findings that have resulted
from the various studies of sfructured and unstructured testing are:
. T|me pressures owing to:
absence of a good test plan and budgeting method
° absence of an approach in which it is stated which test activities are to be carried
out in which phase, and by whom
° absence of solid agreements on terms and procedures for delivery and reworking of
the applications.
* Noinsight in or ability to supply advice on the quality of the system due to:
° absence of arisk strategy
° absence of a test strategy
° tfest design techniques not being used, therefore both quality and quantity of the
test cases are inadequate.
. Inefﬂmency and ineffectiveness owing to:
lack of coordination between the various test parties, so that objects are potentially
tested more than once, or even worse: not tested at all
° lack of agreements in the area of configuration and change management for both
test and system development products
° theincorrect or non-use of the — often available - testing tools
° lack of prioritization, so that less important parts are often tested before more risk-
related parts.

Advantages of a structured testing approach

So what are the advantages, then, of structured testing? A simple, but correct, answer to

that is that in a structured approach, the aforementioned disadvantages are absent. Or,

put positively, a structured testing approach offers the following advantages:

» it can be used in any situation, regardless of who the client is or which system
development approach is used

« it delivers insight intfo, and advice on, any risks in respect of the quality of the tested
system

« itfinds defects at an early stage

» it prevents defects

141



« the testing is on the critical path of the total development as briefly as possible, so that
the total lead time of the development is shortened

« the test products (e.g. test cases) are reusable

« the test process is comprehensible and manageable.

Features of the structured testing approach

What does the structured testing approach look like2 Many different forms are

conceivable. In section 4.1.3 “The essentials of TMap NEXT®” and the subsequent chapters,

the specific TMap form of this is given.

In general, it can be said that a structured testing approach is typified by:

« Providing a structure, so that it is clear exactly what, by whom, when and in what
sequence has to be done.

« Covering the full scope and describing the complete range of relevant aspects.

e Providing concrete footholds, so that the wheel needn’t be reinvented repeatedly.

¢ Managing test activifies in the context of time, money and quality.

4.1.2 The role of testing

This section explains both the significance and role of certain test concepts in their
environment. Spread across the following subjects, the associated concepts are
explained:

» Testing and quality management

e Testing: how and by whom

« Test and system development process

» Testlevels and responsibilities

o Test types

4.1.2.1 Testing and quality management

Quality was, is and remains a challenge within the IT industry. Testing is not the sole solution
to this. After all, quality has to be built in, not tested inl Testing is the instrument that can
provide insight into the quality of information systems, so that test results — provided that
they are accurately interpreted — deliver a contribution to the improvement of the quality
of information systems. Testing should be embedded in a system of measures in order to
arrive at quality. In other words, testing should be embedded in the quality management
of the organization.

The definition of quality as expressed by the ISO strongly hints at its elusiveness. What is
clearly implied to one is anything but to another. Implicitness is very much subjective. An
important aspect of quality management is therefore the minimization of implied
requirements, by converting them into specified requirements and making the degree
visible to which the specified requirements are met. The structural improvement of quality
should take place top-down. To this end, measures should be taken to establish those
requirements and to render the development process manageable.

Definition

Quality assurance covers all the planned and systematic activities necessary to provide
adequate confidence that a product or service meets the requirements for quality [ISO,
1994].

These measures should lead to a situation whereby:
« there are points of measurement and ratings that provide an indication of the quality of
the processes (standardization)

142




* itis clear to the individual employee which requirements his work must meet and also
that he can evaluate them on the basis of the above-mentioned standards

» itis possible for an independent party to evaluate the products/services on the basis of
the above-mentioned standards

« the management can trace the causes of weaknesses in products or services, and
consider how they can be prevented in future.

Preventive, detective and corrective measures are distinguished:

* Preventive measures are aimed af preventing a lack in quality. They can be, for
example, documentation standards, methods, techniques, training, etfc.

¢ Detective measures are aimed at discovering a lack of quality, for example by
evaluation (including inspections, reviews, walkthroughs) and testing.

« Corrective measures are aimed at rectifying the lack of quality, such as the reworking
of defects that have been exposed by means of testing.

It is of essential importance that the various measures are cohesive. Testing is not an
independent activity; it is only a small cog in the quality management wheel. It is only one
of the forms of quality control that can be employed. Quality control is in turn only one of
the activities aimed at guaranteeing quality. And quality assurance is, in the end, only one
dimension of quality management.

41.2.2 Testing, how and by whom

Testing often attracts litfle attention until the moment the test is about to begin. Then
suddenly a large number of interested parties ask the test manager about the status. This
section demonstrates, however, that testing is more than just the execution of tests. We
then explain the ways of testing and by whom the testing can be carried out.

There is more to testing

Testing is more than a matter of taking measurements — crucially, it involves the right
planning and preparation. Testing is the tip of the iceberg, the bigger part of which is
hidden from view (see figure 18 “The iceberg”).

. Measuring

_EsEsS-———e e ——— e
7 F

Preparing

Planning 4 ‘

Figure 18: The iceberg

In this analogy, the actual execution of the tests is the visible part, but on average, it only
covers 40% of the test activities. The other activities — planning and preparation — take up
on average 20% and 40% of the testing effort respectively. This part is not usually
recognized as such by the organization, while in fact it is where the biggest benefit, not
least regarding time, is to be gained. And, significantly, by carrying out these activities as

143



much as possible in advance of the actual test execution, the testing is on the critical path
of the system development programme as briefly as possible. It is even possible, because
of technical developments (test automation), to see a decreasing line in the percentage
of test executions regarding preparation and planning.

Ways of testing

There are various ways of testing (in this case, executing tests). For example, is the testing
being done by running the software, or precisely by not running ite And is a characteristic
of the system being tested using test cases specially designed for it, or precisely not? A
number of ways of testing are:

e Explicit testing

e Implicit testing

Explicit festing

With explicit testing, the test cases are explicitly designed to obtain information on the
relevant quality characteristic. With the execution of the test, or the running of software,
the actual result is compared against the expected result in order to determine whether
the system is behaving according to requirements. This is the most usual way of festing.

Implicit testing

During testing, information can also be gleaned concerning other quality characteristics,
for which no explicit test cases have been designed. This is called implicit testing.
Judgments can be made, for example, on the user-friendliness or performance of a system
based on experience gained without the specific test cases being present. This can be
planned if there has been a prior agreement to provide findings on it, but it can also take
place without being planned. For example, if breakdowns occur regularly during the
testing. In that case, a judgment can be made concerning the security of company
operations.

Who tests?

Anyone can do testing. Who actually does the testing is partly determined by the role or
responsibility held by someone at a given time. This often concerns representatives from
development, users and/or management departments. Besides these, testing is carried
out by professional testers, who are trained in testing and who often bring a different
perspective to testing. Where, for example, a developer wants to demonstrate that the
software works well (“Surely I'm capable of programming?2”), the test professional will go in
search of defects in the software. Moreover, a test professional is involved full-time in
testing, while the aforementioned department representatives in many cases carry out the
testing as a side issue. In practice, the mix of well-trained test professionals and
representatives from the various departments leads to fruitful interaction, with one being
strong in testing knowledge and the other contributing much subject or system
knowledge.

4.1.2.3 Test and system development process

The test and system development processes are closely intertwined. One delivers the
products, which are evaluated and tested by the other. A common way of visualizing the
relationship between these processes is the so-called V model. A widely held
misunderstanding is that the V model is suited only for a waterfall method. But that
misrepresents the intention behind the model. It is also eminently usable with an iterative
and incremental system development method. Therefore, with such a method, a V model
can be drawn, for example, for each increment. Many situations are conceivable that

144



influence the shape and the specific parts of the V model. A few situations are shown in
the box below: “Influences on the V model”.

With the help of the V model, the correlation between test basis, evaluation and testing
(test levels) is explained in this and the following subsection.

In more detail

Influences on the V model
The form and specific parts of a V model can vary through, for example:
* The place of the testing within the system development approach.

o Using a waterfall development method with characteristics including: construction
of the system in one go, phased with clear transfer points, often a lengthy cyclical
process (SDM, among others).

o Using an incremental and iterative development method with the following
possible characteristics: constructing the system in parts, phased with clear fransfer
points; short cyclical process (DSDM and RUP, among others).

o Using an agile development method characterized by the four principles:
individuals and interaction over processes and tools, working software over
extensive system documentation, user's input over contract negotiation, reacting
to changes over following a plan (extreme programming and SCRUM, among
others).

* The place of testing within the life cycle of the information system.

o  Are we looking at new development or the maintenance of a system?

o Does this involve the conversion or migration of a system?

* Aself-developed system, a purchased package, purchased components, or distributed
systems.

* The situation whereby (parts of) the system development and/or (parts of) the testing
are outsourced (outsourcing and off-/near shoring, among other things).

Left side of the V model

In figure 19 “V model (the left side)” the left-hand sideshows the phases in which the
system is built or converted from wish, legislation, policy, opportunity and/or problem into
the solution that has been realized. In this case, the left-hand side shows the concepts of
requirements, functional and technical designs and realization. While the exact naming of
these conceptsis dependent on the selected development method, it is not required in
order to indicate the relationship between the system development and test process at a
general level.

145



wish, legislation, policy,
opportunity, problem

operation &
management

requirements

evaluate -
against functional
design!
evaluate technical
against design
N\
evaluate i .
against realisation
evaluate
against

1 Containing the functional and non-functional specification.

Figure 19: V. model (the left side)

Evaluation

During the system development process, various interim and end products are developed.
Depending on the selected method, these take a particular form, content and
relationship with each other and can be tested on these.

Definition

Evaluation is assessing the products in the system development process without running
software.

In the V model, the left-hand side shows which interim products can be evaluated
(against each other). In evaluation, the result can be compared with:
» The preceding interim product
For example, is the functional design consistent with the technical designe
» The requirements from the succeeding phase
For example, can the builder realize the given design unambiguously and are the
specifications testable?
» Otherinterim products at the same level
For example, is the functional design consistent internally and with functional designs
related to ite
» The agreed product standard
For example, are there use cases presente
+ The expectations of the client (see box “Realized requirements”)
Is the interim product still consistent with the expectations of the acceptors?

Besides interim products, end products can be evaluated as well. For instance by
inspecting documentation like safety procedures, courses, manuals etc.

With this, various fechniques are available for the evaluation: reviews, inspections and
walkthroughs (see also section 4.12 “Evaluation techniques”).

146




In more detail

Readlized requirements

What about the trajectory of wish, legislation, etc., to product?2 Will, for example, all the
requirements be realized, or will something be lost along the way?2 A survey carried out by
the Standish Group unfortunately shows a less than encouraging picture. The findings of
the survey (figure 20 “Realized requirements”), in which the percentage of realized
requirements was determined, shows that, of the original defined requirements, only 42%
to 67% are actually realized by the project [The Standish Group, 2003].

100

80

60

40

Percentages

20

1994 2000
(1995) (2001) (2003)

Figure 20: Realized requirements

Besides normal evaluation results (the finding of defects) a well-organized and executed
evaluation process can deliver a contribution to a higher realization percentage in
respect of the original defined requirements.

4.1.3 The essentials of TMap NEXT®

This chapter describes the specific TMap content of a structured test method. The content
can be summarized in four essentials.

The four essentials of TMap:

1. TMap is based on a business-driven test management (BDTM) approach.

2. TMap describes a structured test process.

3. TMap contains a complete tool box.

4. TMap is an adaptive test method.

The first essential can be related directly to the fact that the business case of IT is
becoming ever more important to organizations. The BDTM approach provides content
that addresses this fact in TMap and can therefore be seen as the ‘leading thread’ of the
structured TMap test process (essential 2). The TMap life cycle model is used in the
description of the test process. Furthermore various aspects in the field of infrastructure,
techniques and organization must be set up to execute the test process correctly. TMap
provides a lot of practical applicable information on this, in the form of e.g. examples,
checklists, tfechnique descriptions, procedures, test organization structures, test
environmenfts and test tools (essential 3). TMap also has a flexible setup so that it can be
implemented in different system development situations: both for new development and
maintenance of a system, for a self-developed system or an acquired package, and for
outsourcing (parts of) the testing process. In other words, TMap is an adaptive method
(essential 4).

In the “TMap model of essentials” below, the left triangle symbolizes BDTM, the triangle at

the bottom the tool box, the parallelogram the structured test process, and the ‘circle’
TMap's adaptiveness.

147



pdaptive

Guiide to complete.
1Lt process

Figure 21. TMap model of essentials.

4.1.3.1 Business Driven explained

The key to testing is that tests are executed on the basis of test cases, checklists and the
like. But what kind of tests are they?2 To ensure the tests’ usefulness, they must be set up to
test those characteristics and parts of a test object that represents a risk if it does not
function adequately in production later on. This means that various considerations have
already been made before test execution can begin. In other words, some thought has
already been given to which parts of the test object need not be tested, and which must
be tested and how and with what coverage. So what determines thise Why not test alll
parts of the test object as thoroughly as possible? If an organization possessed unlimited
resources, one option might indeed be to test everything as thoroughly as possible. But
naturally, in real life an organization rarely has the resources to actually do this, which
means that choices must be made in what is fested and how thoroughly. Such choices
depend on the risks that an organization thinks it will incur, the available quantities of fime
and money, and the result the organization wishes to achieve. The fact that the choices
are based on risks, result, time and cost is called business-driven and constitutes the basis
for the BDTM approach. To understand and apply the BDTM approach, we first explain the
concept of the "business case”.

Business case as determining factor

IT projects must be approach increasingly from a purely economic perspective. The theory
of IT governance controls projects on the basis of four aspects: result, risk, fime and cost.
Forinstance, it might be a more attractive investment for an organization to start a high-
risk project that potentially yields a high result than a project with very low risks where the
benefits barely exceed the costs.

Normally, a business case is at the basis of an IT project. There are various definitions of
business case, including the project-oriented one below according to [PRINCE2, 2002].

Definition

The business case provides the economic justification for the project and answers the
questions: why do we do this project, which investments are needed, what does the client
wish to achieve with the resulte

During the project, the business case is verified at predefined points in time to ensure that
the eventual results remain valid for the client. TMap supports the economic justification of

148




IT, franslating it to the activity of testing. TMap assumes that a project approach based on

a business case complies with the following characteristics:

e The approach focuses on achieving a predefined result.

» The total project to achieve this result is realized within the available (lead) time.

» The project to achieve this result is realized at a cost in balance with the benefits the
organization hopes to achieve.

» The risks during commissioning are known and as small as possible. All of this within the
framework set by the abovementioned characteristics.

The four IT governance aspects described above can be found in these characteristics.
For the successful execution of a project, it is important that the test process is aligned with
the business case. The relationship between the business case and the test process is
made via the business-driven test management approach. In other words, with this
approach, the business case characteristics can be ‘tfranslated’ to the test process.

Characteristics of a business-driven test management approach

Often test plans and reports fail to appeal to the client. The reason being that in the past
the tester virtually always made decisions from an IT perspective. The test process was
internally oriented and filled with test and IT jargon. This made it difficult to communicate
with a non-IT client, such as a user department, even though this is extremely important.

TMap devotes explicit attention to communication due to the business-driven test
management approach4. BDTM starts from the principle that the selected test method of
operation must enable the client to control the test process and (help) determine the test
method of operation. This gives the testing an economic character. The required
information to make this possible is delivered from the test process.

BDTM has the following specific properties:

» The total test effort is related to the risks of the system to be tested for the organization.
The deployment of people, resources and budget thereby focuses on those parts of the
system that are most important to the organization. In TMap, the test strategy in
combination with the estimated effort is the instrument to divide the test effort over
system parts. This provides insight into the extent to which risks are covered, or not.

» The estimated effort and planning for the test process are related to the defined test
strategy. If changes are implemented that have an impact on the thoroughness of
testing for the various system parts or systems, this is franslated immediately to a change
in the estimate and/or planning. The organization thus is ensured of an adequate view
of the required budget, lead fime and relationship with the test strategy at all times.

* At various moments in the testing programme, the client is involved in making choices.
The advantage is that the test process matches the wishes and requirements — and
therefore the expectations — of the organization as adequately as possible. Moreover,
BDTM provides handholds to visualize the consequences of future and past choices
explicitly.

The steps in the business-driven test management approach

To understand the BDTM approach, it is important to keep an eye on the final objective.
Which is to provide a quality assessment and risk recommendation about the system. Since
not everything can ever be tested, a correct assessment can only be realized by dividing

4 Please note that BDTM is not an entirely accurate name. The word “business” suggests that it is infended
exclusively for the link with the user departments, while testers clearly often still deal exclusively with IT
departments. In this book, however, the general name BDTM is used.

149



the test effort, in terms of time and money, as adequately as possible over parts and
characteristics of the system to be tested. The steps of BDTM focus on this (see figure 22):

1.

Formulating the assignment and gathering test goals
In consultation with the client, the test manager formulates the assignment, taking
account of the four BDTM aspects: result, risk, time and cost.

The test manager gathers the test objectives to determine the desired results of testing
for the client. A test goal is a goal for testing relevant to the client and other
acceptors, often formulated in terms of IT-supported business processes, realized user
requirements or use cases, critical success factors, change proposals or defined risks
(i.e., the risks to be covered).

Determining the risk class for each combination of characteristic and object part.
When multiple test levels are involved, it is determined in a plan which test levels must
be set up (master test plan). It is often already determined on the basis of a product
risk analysis® what must be tested (object parts) and what must be investigated
(characteristics).

If only one test level is involved, or if no or an overall product risk analysis was
performed at the master test plan level, a (possibly supplementary) product risk
analysis is performed within the relevant test level.

The eventual result (whether it is arrived at immediately or after one or more
supplementary analyses) is a risk table defining a risk class related to the test goals
and the relevant characteristic per object part (“Master test plan risk table”).

A table then provides a guideline for the relative test infensity per combination of
characteristic/object part and test level (“Master test plan strategy table”).

Now an iterative process emerges:

3.

Determining whether a combination of characteristic and object part must be tested
thoroughly or lightly.

To determine the thoroughness of testing, the risk class per object part determined in
the previous step is used as a starting point. Initially, the following applies: the greater
the risk, the more thorough the required testing. The result is recorded in a strategy
table per test level (“Test plan strategy table”).

An overall estimate is then made for the test and a planning set up. This is
communicated with the client and other stakeholders and, depending on their views,
adjusted as necessary. In this case, steps 3 and 4 are executed once again. This
emphatic gives the client control of the test process, enabling him to manage based
on the balance between result and risk on the one hand and time and cost on the
other.

End of iteration.

5.

Allocating test techniques to the combinations of characteristic and object part.

5

A product risk analysis (PRA) aims to ensure that the various stakeholders and test manager achieve a joint
view of the more and less high-risk parts/characteristics of the system. The focus in the PRA is on the product
risks, i.e. what is the risk to the organization if the product does not have the expected quality?

150



When the client and stakeholders agree on the estimate and the planning, the test
manager completes a “Test design table”. In here, the decisions concerning thorough
and less thorough testing are translated to concrete statements about the targeted
coverage. He then allocates test techniques to the combinations of characteristic
and object part. The available test basis, among other things, is taken into account.
These techniques are used to design and execute the test cases (and/or checklists) at
a later stage. This is where the primary test process starts.

Throughout the test process, the test manager provides the client and other
stakeholders with adequate insight into and conftrol options over:

» the progress of the test process

» the quality and risks of the test object

« the quality of the test process.

151



1

Test goal table

[ Assignment and test goolsm]

Critical success factors
Change
Requirements
Business processes

"2

CLIENT

[ Determining risk class W]

\*

3

v

Determining
light/thorough testing

Result,
Risks,
Time and
Costs

\_/

"5

{ Allocating test Techniquesw]

A 4

} Creating test coseswj

Test execution

Figure 22: BDTM steps

Type of festaogl

Ex f

*H;\r\ess processes A ona D Processes A anb B must continue

fo function correctly after the
change

unctionalit erformance,

er -Triendliness

User requirements Check of the credit -worthiness of nctionality
the applicant must be possible
Critical success factors Online offer must appear on the performanc

screen within one minute

Quality characteristics

friendliness

Functio nality, performance, user -

Functionality , performance,
A user -friendiiness . suitabiiity

Characteristic Objectparts : | Sub sys1 Subsys2 | Tofa Isys

| Functionalty >

I Change of fail H M L
Test goals Damage
Business process A H A g B
Business process B L c c =
Ris k class_=> C A B B

Master test plan strategy table I

Cl iect part RC Evaluate DT ST UAT PAT
<:E:r\cﬁor\ah0: =

- subsys | \_ (s e o [ee lo)

_ subsys 2 \ B | e~ . Lee |1

- total \ 8 AN /7 e oo

User - friendiiness N[ & [e A7 T Y

Performanc & o °

Vi
sysl

ci istic Sub sys2 Total sys
Funcfionali 0 E) 8/1 3/00
funcfiond rearessi o
User -friendliness , B 3/00
usalbilty

cl Object part | | Test type Techni_ques

Functionality Subsys] Functional test | fel: sample ST
(A/@) te2: sample ST

Functionaity Total system Regression te3: DCT
(B/0®)

User -friendiness Total system Usabilty ted: SUMI
(/00

In summary, the advantages of the BDTM approach are:

« The client having control over the process.

« The test manager communicates and reports in the terminology of the client with
information that is useful in the client’s context. E.g. by reporting in terms of test goals
(such as business processes) instead of object parts and characteristics.

152



« At the master test plan level, detailing can be as intensive as required or possible. This
may enable expending less effort on performing a product risk analysis or creatfing a
test strategy for the separate test levels, or even to skip these steps (explanation of
master test plan in subsequent section).

4.1.3.2 Structured test process

This section describes the phasing and activities in the following TMap processes:
* Master test plan, managing the total test process

* Acceptance and system tests

 Development tests.

Master test plan and other TMap NEXT processes

When the test manager, after consultation with the receiving parties, decides what will be
tested for each test level, chances are that in the total picture of testing, certain matters
will be tested twice unnecessarily. Or that certain aspects are ignored. The method should
therefore be vice versa. A test manager, in consultation with the client and other
stakeholders, makes a total overview of the distribution across test levels as to what must
be tested when and with what thoroughness. The aim is to detect the most important
defects as early and economically as possible. This agreement is defined in the so-called
master test plan (MTP). This plan constitutes the basis for the test plans for the separate test
levels. In addition to this content-based alignment, other types of alignment are: ensuring
uniformity in processes (e.g. the defect procedure and testware management),
availability and management of the test environment and tools, and optimal division of
resources (both people and means) across the test levels.

This means that in addition to test levels like acceptance, system and development fests,
the master test plan also plays an important part in TMap. Both for the master test plan
and the test levels, it is important to set up a good process for creating plans and
preparing, executing and managing activities.

While the goals of the acceptance and system tests differ, these test levels are not
described separately, but as one single process. This was decided because the activities in
both test levels are virtually the same and separate process descriptions would therefore
have (too) much overlap.

In addition to these processes, the process “Supporting processes” has been defined
because it is more efficient to organize certain aspects/support centrally than per project.
This involves supporting processes for the following subjects:
o Test policy
Permanent test organization
Test environments
Test tools
Test professional.

The supporting processes are discussed in relevant places as part of the complete tool box
(see the subsection ‘Complete tool box’).

Process: master test plan, managing the total test process

The master test plan provides insight info the various test and evaluation levels to be used,
in such a way that the total test process is optimized. It is a management tool for the
underlying test levels.

153



The process “Master test plan, managing the total test process” is split up into two phases:
the Planning phase of the total test process and the Conftrol phase of the total test
process.

Planning phase of the total test process

The author of the MTP, often the test manager formulates the assignment, taking into
account the four BDTM aspects of result, risks, fime and cost, in consultation with the client.
The test manager then works on the upcoming programme by having discussions with
stakeholders and consulting information sources, such as documentation. In parallel, the
test manager further elaborates the assignment and determines its scope in consultation
with the client. In this phase, the first four steps of BDTM are executed: performing a PRA,
establishing a test strategy, estimate and planning (see figure 22 “BDTM steps”).

Further activities in the creation of the plan are: the test manager defines the products
that must be delivered by the test levels and makes a proposal as to the setup of the test
organization, centrally and overall per test level. The test manager aligns the infrastructure
requirements of the test levels in order to deploy the — often scarce — test infrastructure as
efficiently as possible. Test management can also be set up in part at the master test plan
level. This can be achieved both by defining central procedures and standards for
management and by the cenfral management of certain aspects. Both options aim to
prevent reinventing the wheel in the various test levels. The main risks threatening the test
process are listed, and possible measures are proposed to manage these risks. As his last
step, the test manager submits the master test plan to the client for approval.

Confrol phase of the total test process

The aim of this activity is controlling the test process, infrastructure and test products at the
overall level to provide contfinuous insight into the progress and quality of the total test
process and the quality of the test object. Conformable to the frequency and form
defined in the test plan, reports are made on the quality of the test object and the
progress and quality of the test process. From the very first test activities, the testers
develop a view of that quality. It is important that this is reported in every stage of the test
process. The client receives periodical reports, and ad-hoc reports on request, on the
condition of the system. Such reporting and adjustment are a vital part of the BDTM
approach (BDTM step 6) and take place at both the level of the master test plan and that
of the test level (see figure 23).

onitoring,
reporting
and adjusting

management

onitoring,
reporting
and adjusting management

Figure 23. Execution, monitoring, reporting and adjusting.

154



Process: acceptance and system tests
See section 4.1.5.

Process: development tests
See section 4.1.6.

4.1.3.3 Complete tool box

TMap supports the correct execution of the structured test process with a complete tool
box. The tool box focuses on working with the following subjects:

¢ Techniques :howitistested

* Infrastructure : where and with what it is tested

* Organization :who does the testing

The various tools are described in more detail in the TMap Suite at the moment they can
be used. With the tool box, the tester possesses a great number of options to meet the fest
challenge successfully.

Techniques

Many techniques can be used in the test process. A test technique is a combination of
actions to produce a test product in a universal manner.

TMap provides techniques for the following:
e Test estimation
+ Defect management
e Creating metrics
¢ Product risk analysis
¢ Test design
e Product evaluation.

TMap also offers various checklists and overviews that can be used as a tool during the
preparation and/or execution of certain actfivities.

The (groups of) test techniques are summarized below.

Test estimation

Estimates can be made at a number of different levels. The various estimation levels are
shown in figure 24.

MTP Estimate

|

Estimate per test level

|

Estimate per test phase

|

Estimate per test activity

Figure 24. Estimation levels.

Independent of the level, creating an estimate consists of the following generic steps:

155



1. Inventory the available material that can serve as a basis for the estimate.
2. Select (a number of) estimating techniques.

3. Determine the definitive estimate.

4. Present the outcome.

Choosing the estimating techniques in particular is a step requiring experience. You can
select from several estimating techniques:

e Estimation based on ratios. Here, the test effort is generally measured against the
development effort, e.g. in percentage ratios.

Estimation based on test object size.

Estimation using a ‘Work Breakdown Structure’.

Proportionate estimation based on the total fest budget.

Estimation on the basis of extrapolating experience figures from the beginning of the
testing programme.

e Estimation on the basis of size and strategy using TMap's test point analysis (TPA).

Furthermore, TMap provides a technique to create an evaluation estimate.

Defect management

A defect is an observed difference between the expectation or prediction and the actual
outcome. While the administration and monitoring of the defects is factually a project
maftter and not one of the testers, testers are usually very closely involved. A good
administration must be able to monitor the lifecycle of a defect and provide various
overviews. These overviews are used, among other things, to make well-founded quality
statements. See section 4.7.

Creating metrics

The definition, maintenance and use of metrics is important to the test process because it
enables the test manager an answer, supported by facts, to questions like:

«  What about the quality of the test object?

«  What about the progress of the test process?

A structured approach to realize a set of test metrics is using the Goal-Question-Metric
(GQM) method.

In addition to describing the GQM method, TMap gives instructions to set up a practical
test metrics starter set. It also provides a checklist that can be useful to make
pronouncements on the quality of the object to be tested and the quality of the test
process.

Product risk analysis

A product risk analysis (PRA) is analyzing the product to be tested with the aim of
achieving a shared view, among the test manager and other stakeholders, of the more or
less risky characteristics and components of the product to be tested so that the
thoroughness of testing can be agreed upon. The focus in PRA is on the product risks, i.e.
what is the risk to the organization if the product does not have the expected quality?

The result of the PRA constitutes the basis for the subsequent decisions in strategy as to
light, thorough or non testing of a characteristic (e.g. a quality characteristic) or object
part (component) of the product to be tested.

Test design
See chapter 3.

156



Product evaluation
See section 2.20 (Building Block 20: Reviewing requirements).

Various checklists and overviews

TMap offers a great variety of checklists that will constitute a welcome addition to the
tester when executing certain activities. For instance, there are checklists that can be used
as support in faking stock of the assignment, determining the test facilities, determining the
test project risks, establishing the test strategy, the evaluation of the test process, taking
interviews, and determining whether adequate information is available to use a specific
test design fechnique. TMap also offers other tools, such as an overview matrix of
automated tools per TMap activity, a test type overview, and criteria to select a tool.

These tools and many more can be found on and downloaded from www.tmap.net.

Infrastructure
Test environments, test tools and workplaces are necessary to execute tests..

Test environments
See also section 4.5.

A fitting test environment is necessary for testing a test object (running software). A test
environment is a system of components, such as hardware and software, interfaces,
environmental data, management tools and processes, in which a test is executed. The
degree to which it can be established in how far the test object complies with the
requirements determines whether a test environment is successful. The setup and
composition of a test environment therefore depend on the objective of the fest.
However, a series of generic requirements with which a test environment must comply to
guarantee reliable test execution can be formulated. In addition fo being representative,
manageable and flexible, it must also guarantee the confinuity of test execution.

Setting up and managing the test environment represents an expertise of which testers
generally have no knowledge. This is why a separate department — outside the project —is
generally responsible for setting up and managing the test environment.

Test tools
See also section 2.16 and section 4.6.

To execute the tests efficiently, tools in the form of test tools are necessary. A test tool is an
automated instrument that provides support to one or more test activities, such as
planning and control, test specification, and test execution. The use of tools can have the
following advantages:

¢ Increased productivity

* Higher testing quality

¢ Increased work enjoyment

e Extension of test options.

The test tools are classified in four groups:
* Tools for planning and managing the test
* Tools for designing the test
* Tools for executing the test
+ Tools for debugging and analyzing the code.

157



Workplaces

One of the aspects that is often forgotten in testing, is the availability of a workplace
where testers can do their job under good conditions, effectively and efficiently. This
means office setup in the broadest sense since the testers must also be able to do their
work under good conditions. The workplace is therefore more than just office space and a
PC. Matters such as access passes, power supply and facilities to have lunch must be
arranged. At first sight, the workplace for a tester does not differ much from the regular
workplace. But appearances can be deceptive. What is tested is often new to the
organization and the workplace. Testers may have to deal with the situation that their
workplace is not yet prepared for the new software. For example, testers often require
separate authorizations. They must, for instance, be able to install the new software on
their local PC. This may also be necessary for the use of certain fest tools.

Organization

See section 2.4 (Building Block 4: Test Organization), section 2.13 (Building Block 13:
Permanent Test Organization) and section 2.18 (Building Block 18: Integrated Test
Organization).

4134 Adaptive and complete method

TMap is an approach that can be applied in all situations and in combination with any
system development method. It offers the tester a range of elements for his test, such as
test approaches, coverage types, test design techniques, fest infrastructure, test strategy,
phasing, test organization, test tools, etc. Depending on the situation, the tester selects the
TMap elements (Building Blocks) that he will deploy. There are situations in which only a
limited number of elements need to be used; but in other situations he will have to use a
broad range of elements. This makes TMap an adaptive method, which in this context is
defined as:

Definition

Adaptive is the ability to split up an element into sub-elements that, in a different
combination, result in a new, valuable element
for the specific situation.

The adaptiveness of TMap is not focused on a specific aspect of the method, but is
embedded throughout the method. Adaptiveness is more than just being able to respond
to the changing environment. It is also being able to leverage the change o the benefit
of testing. This means that TMap can be used in every situation and that TMap can be
used in a changing situation. In the course of projects and testing, changes may occur
that have an impact on earlier agreements. TMap offers the elements to deal with such
changes.

TMap's adaptiveness can be summarized in four adaptiveness properties:

Respond to changes

(Re)use products and processes
Learn from experiences

Try before use

These properties are explained in further detail below.

158



Respond to changes

Adaptiveness starts with determining the changes and responding to them. In TMap, this
happens from the very beginning in the earliest activities of the (master) test plan. When
determining and taking stock of the assignment, obtaining insight into the environment in
which the test is executed and establishing possible changes play a major part. This is
precisely where the basis is created for the further elaboration and implementation of the
method. Which test levels, test types, phases, and tools are used and how? But it is not
limited to these activities. The test stfrategy and associated planning are defined in close
consultation with the client. If the test strategy and derived estimate and planning are not
acceptable to the client, the plan is adapted. This emphatic gives the client control of the
test process, enabling him to manage based on the balance between result and risk on
the one hand and time and cost on the other. Such feedback is provided throughout the
testing programme, and in the control phase, the test manager may also decide to adapt
certain aspects of the test plan in consultation with the client.

(Re)use products and processes

Being able to use products and processes quickly is a requirement for adaptiveness. TMap
offers this possibility, among other things thanks to the large quantity of tools included in
the form of test design techniques, checklists, templates, etc. These can be found in the
book and on www.tmap.net.

In addition to use, reuse plays an important part. The emphasis in this respect lies in the
Completion phase, where the activities are defined to identify what can be reused and
how it can be optimally preserved. TMap offers various forms of a permanent test
organization for the organizational anchoring of the reuse of products and processes.

Learn from experiences

As a method, TMap offers the space to learn and apply what was used. Therefore the
activity evaluating the test process is incorporated into the test process. Another important
instrument is the use of metrics. For the test process, metrics on the quality of the test
object and the progress and quality of the test process are extremely important. They are
used to manage the test process, justify the test recommendations, and compare systems
or test processes. Metrics are also important to improve the test process through assessing
the consequences of certain improvement measures.

Try before use

TMap offers room to try something before it is actually used. The main instruments here are
the activities relating to the intake. The intake of the test basis (using a testability review), of
the test infrastructure, and of the test object allow one to try first before actually using.

Implementing TMap does not mean that everything in the TMap Suite should be used
without question. Another form of trying before using is therefore ‘customizing’ TMap to fit
a specific situation. A selection can be made from all of the TMap Building Blocks to
achieve this. After the approach, customized to the situation, has been tried out (‘pilot’), it
can be rolled out in the organization.

For many situations, ‘customizing’ TMap has already been done. The specific TMap recipe

for a certain situation is called a “pattern”. TMap explicitly invokes the development of
new patterns, based on existing and/or new Building Blocks.

159



414 Testing in an agile environment

The TMap phases turn out to be easily integrated with the scrum model. But how to
integrate the activities of those phasese Practice shows that these, too, can be adapted
for use in a scrum approach without too much trouble.

The following sections explain how, per phase, the most important activities in a scrum
approach can be executed. Please keep in mind that scrum is an agile approach,
whereas TMap is an adaptive approach. This means that all suggestions and practical
examples mentioned in the following sections will probably have to be adapted to your
own specific situation. In case you do not have the TMap NEXT book at hand, figure 25 will
provide you with a complete overview of the TMap phases and activities.

monitorin
reporting and
adjusting

execution

Preparation [ e gt B2 g g g o |

Specification start s end
Execution start 1H- 3 4 ond
Completion m.[:]n
Planning the total test process Planning each test level Setting up and maintaining infrastructure
1. Establishing the assignment 1. Establishing the assignment 1. Specifying the infrastructure
2. Understanding the assignment 2. Understanding the assignment 2. Realizing the infrastructure
3. Analyzing the product risks 3. Determining the test basis 3. Specifying the infrastructure intake
4. Determining the test strategy 4. Analyzing the product risks 4. Intake of the infrastructure
5. Estimating the effort 5. Determining the test strategy 5. Maintaining the infrastructure
6. Determining the planning 6. Estimating the effort 6. Preserving the infrastructure
7. Defining the test products 7. Determining the planning
8. Defining the organization 8. Allocating test units and test techniques Preparation
9. Defining the infrastructure 9. Defining the test products 1. Collection of the test basis
10.0Organizing the management 10.Defining the organization 2. Creating checklists
11.Determining test process risks and 11.Defining the infrastructure 3. Assessing the test basis
countermeasures 12.0rganizing the management 4. Creating the testability review report
12.Feedback and consolidation of the plan 13.Determining test process risks and

counter measures Specification
Control of the total test process 14.Feedback and consolidation of the plan 1. Creating test specifications
1. Management 2. Defining central starting point(s)
2. Monitoring Control of each test level 3. Specifying the test object intake
3. Reporting 1. Management
4. Adjusting 2. Monitoring Execution
3. Reporting 1. Intake of the test object
4. Adjusting 2. Preparing the starting points
3. Executing the (re-)tests
4. Checking and assessing the test resuits

Completion
. Evaluating the test process
. Preserving the testware

N

Figure 25. TMap NEXT phases and activities.
Planning
Just as in the planning phase of TMap, the planning schedule in scrum is also executed at

various moments: at the start of the project, at the beginning of each sprint and during the
daily scrum (see figure 26). The formulation of a test strategy is an important — but not the

160



only — activity of the planning activities, and that is why the moments at which test
strategy formulation takes place are separately mentioned in this section: the formulation
of the project test strategy at the start of the project and the formulation of the sprint test
strategy at the beginning of the sprint. The daily scrum discusses the planning of the tasks
that will be worked at that day and priorities are adjusted if necessary.

sprint

project planning sprint planning review retrospective

project and sprint test strategy

Figure 26. Planning activities.
Project test strategy

The planning schedule for the total test process is formulated at the beginning of a
project. However, scrum is not primarily concerned with the actual planning of tasks in
terms of fixed points in time. These are placed on a scrum board and become ‘active’
when the time is right. At this point in time of the scrum project, the focus lies more on
defining a global test strategy. This is sometimes referred to as a ‘project test strategy’ —in
a fradifional developmental environment this would be a component of the master test
plan.

It is good to be aware that the formulation of the project test strategy takes place during
the ‘planning’ scrum event, and is incorporated into the project planning (product
backlog) schedule. And in scrum projects that begin with a sprint 0, this is the moment to
determine the high-level product risk and the project test strategy. This occurs parallel to
other sprint 0 ‘sefting up activities’ such as arranging a kick-off, setting up tools,
determining a definition of done, setting up the process, estimating the effort, formulating
a communications plan and providing the training (see figure 27).

These activities are only examples of activities that take place in a sprint 0, and can and
will differ per organization. In content-related terms, the project test strategy must be
compact and global. After all, the strategy will alter during the various sprints in the project
due to the ongoing acquisition of insight.

161



gy Process High level
Definition of set-up estimation

done of effort

Communi-
Test strategy cation

Kick-off 5
«Teambuilding Environment
*Knowledge inventory *Technical
«Briefing «Facilitating

Figure 27. Possible activities in Sprint 0.

The most important themes to include in the project test strategy are the product risks for
each backlog item and a global test strategy covering all the sprints (see Figures 15 and
16). After all, a scrum project always starts with a planning schedule.

To do this properly, it is essential to gain insight into the product risks and the required test
intensity, or, in other words, the degree to which the risks have to be covered. High risks
and thorough testing will ultimately have different outcomes for the scrum planning
schedule than low risks and light testing will, and this may have consequences for the
prioritization of the product backlog items.

Themes such as planning and estimating are components of the above-mentioned scrum
planning schedule and demand little or no attention in the project test strategy. The
assignment to perform the tests is given by the product owner and can be translated into,
for example, criteria that are included in the definition of done. This aspect, too, requires
very little attention in the project test strategy.

Defining the test infrastructure (including other test environments, test data and test tools,
etc.) could be incorporated intfo another plan, but if a sprint 0 is scheduled it is better to
configure the test infrastructure immediately and — inasmuch as it may be necessary — to
have it ready and available, or at least to make a start on it before the first sprint begins. If
no sprint O has been scheduled, these tasks can also be included on the backlog as
technical product backlog items.

Sprint test strategy

The sprint test strategy (product risks and test strategy) is defined during the sprint planning
event and included in the sprint backlog. For example, during the sprint planning stage,
the development team estimates, with the aid of planning poker, the amount of time
required for each task of a sprint backlog. The amount of fime required is influenced by
factors such as whether the test has to be thorough or light, which, in turn, is related to the
product risk. Therefore, it is advisable to include the risk classification of a backlog item —
particularly in the case of user stories — in addition to the priority specified by the product
owner, before the planning poker is initiated.

The sprint test strategy is a detailed infill of the project test strategy and is liable to change

in the course of the sprint. Similar to the project test strategy, this must also be a compact
strategy, preferably one that fits on a whiteboard. The most important components are the

162



product risk analysis and the test strategy for the current sprint. In addition to the overall
product risk analysis, the team is the most important source for the product risk analysis.

The risk analysis described in TMap can be adapted and executed as follows. Of course,

all members of the scrum team are present here and actively participate. In view of the

fact that the analysis takes place per sprint, no huge quantities of backlog items are

involved, so that the analysis need not be very time-consuming. An hour often turns out to

be more than sufficient. The execution can be done by means of the following steps:

1. Gather the scrum team members together.

2. List all the backlog items of the current sprint on a whiteboard.

3. Ask all team members individually which quality characteristics of each backlog item
are important to them and ask if anything should be added to the list.

4. Determine the possible damage and chance of failure for each combination of
backlog item and quality characteristic. The product risk is then: damage x chance of
failure.

The risk table could look something like figure 28.

Item | Characteristic | Damage | Chance Risk

of failure | class

w
(o]

Functionality
Usability
Functionality
Security
Functionality
Performance
Performance
Functionality
Suitability

w

m m OO0

NINIFININIWIN|N|W
NN == NN =
Hlh|IRININO|IBAIN

Figure 28. Risk table.

The test strategy must be determined in the next step, which specifies the test intensity with
which a combination of backlog item and quality characteristic is o be tested. To make
the test practically applicable, columns such as ‘test intensity’ and ‘test design technique’
can simply be added. This helps the team with a test role in the specification of the test
cases (see figure 29). Then ‘simply’ apply the test design fechnique fo the backlog item,
on each line in the table, and the test intensity — depth of testing — in relation to the risk
to be covered is achieved.

5. Determine the test intensity.

6. Determine on the basis of test intensity and quality characteristic which test design
technigue should be applied.

163



Item | Characteristic Damage | Chance Risk Intensity Test design

of failure | class technique
Functionality 3 3 9 L) MCC
A Usability 2 1 2 . SYN
Functionality 2 2 4 .. ET
. Security 3 2 6 . SEM-MCDC
Functionality 2 1 2 . DCoT-EQ
Performance 2 1 2 . EG
E Performance 1 1 1 . EG
Functionality 2 2 4 . ECT-MCDC
° Suitability 2 z 4 . PCT-TDL2
Figure 29. Test strategy table.
ET : Exploratory Testing
ECT-MCC  :Elementary Comparison Test- Mulfiple Condition Coverage,
SYN : Syntactic Test,

ECT-MCDC : Elementary Comparison Test - Modified Condition/Decision Coverage,
SEM-MCDC : Semantic Test - Modified Condition/Decision Coverage,

DCoT-EC : Data Combination Test — Equivalence Classes,

EG : Error Guessing,

PCT-TDL2 : Process Cycle Test — Test Depth Level 2

Want to know more?2 Consult chapter 3 (“Website”).

The test design techniques are listed in the test strategy table. Of course, other quality
measures are also possible, such as evaluation (carrying out a review for example or an
inspection), pair programming or the performance of a more severe unit test. You can
adapt the table completely to your own situation. If, for example, you wish to widen the
concept dealt with in the column ‘Test design technique’, you can simply change the
column fo ‘Quality measures’ for example. A column entitled ‘Moment/Location’, for
instance, can also be added if considered relevant.

Now that the test strategy table has been completed, it is now time to record the rows in
the table as tasks on the scrum board. Accordingly, the test strategy table does not
remain a purely ‘stand-alone’ tablel!

It is not necessary to make a distinction between the diverse test levels. But if this is desired
nevertheless, all user stories in which, for example, the quality characteristic of
‘functionality’ is mentioned can be grouped into a system test, and all user stories with
‘usability’ and ‘suitability’, for example, can be bundled to form an acceptance test. And
these can be executed during or parallel to the sprint or even afterwards if required.

The test strategy forms the basis of all (test) activities, processes and projects. It contains
the legitimacy concerning what must be tested and how, which risks are inherent in the
process, and which of these ought to be covered and how. This may influence the
priorities in a scrum project, in the sense of the greater the risk, the higher the priority, for
instance. Decisions involving what should or should not be done, with respect to time,
costs and result (quality) may also be influenced. In a nutshell, a well-considered test
strategy facilitates the entire scrum team.

164



Control

In scrum, the control phase of TMap is actually more of a facilitating activity than a
restraining one. The team members must rely upon one another and, in furn, be frusted by
the management. One component of management is the ‘daily scrum’, in which the
progress of the test activities is reported and made transparent to all; any required
adaptations to the priorities are discussed (see figure 30).

project planning sprint planning

Figure 30. Control activities.

Progress

sprint

review retrospective

A pragmatic way to ensure that the progress is clear is to extend the test strategy table
with a few columns, such as ‘Tests created Y/N', ‘Tests executed Y/N' and ‘Tests passed

Y/N'.

Characteristic

Functionality
Usability

Functionality
Security

c Functionality
D Performance
E Performance
Functionality

Suitability

\

g
2‘ |
g
E |
3 |

Intensity

Test
design
technique

mMcc

| Tests
executed
(Y/N)

Tests
created
(Y/N)

Tests
passed
(Y/N)

SYN

ET

SEM-MCDC

DCoT-EQ

EG

EG

ECT-MCDC

PCT-TDL2

Figure 31. Test progress table.

With this table (figure 31) on the whiteboard, everyone can understand the test progress at
a glance. Or, if the rows of the test strategy table have been franslated into tasks on the
sprint backlog, again everyone will be able to see how much (test) progress has been
achieved. Finally, the tasks will be listed in the current status column on the scrum board:
to do, in progress, and done. Both the product and the sprint burndown charts also

165



provide information on the current status and progress, and adjustment may take place
on this basis.

Defects

Any defects discovered are communicated during the sprint and the measures to be
taken are discussed and implemented. Defects that can be rectified in a sprint are not
registered. In such a case, the tester and the developer often collaborate to solve the
defect in a rapid way. This facilitates the reduction of documentation and focus on
progress. To safeguard against the rectification of defects becoming a main activity, the
following guidelines are provided. A defect is recorded in the defects administration when:

the defect cannot be solved within one day
the team decides — in consultation with the product owner — to rectify the defect

in another sprint
a defect discovered during the sprint review cannot be rectified in the sprint
review.

Of course, the tfeam may deviate from such protocol if required. If the team believes that
more than the minimum ought to be registered, that is fine. This may cover cases such as
when metrics have to be built up, for example, but this should be recorded in the definition
of done.

‘Standard defect procedures’ can be used for the identification and treatment of defects.
However, there is one major difference. It is not the test manager but the scrum team that
is responsible for the registration and monitoring of the defects. In the case that a defect
surpasses the scope of the scrum team, this can be designated to the scrum master.
Sefting up and maintaining infrastructure

As described previously, it is advisable to begin by setting up of the test infrastructure in a
sprint O (see figure 32).

infrastructure

sprint

project planning sprint planning review retrospective

Figure 32. Setting up and maintaining infrastructure activities.
The test infrastructure consists of test environments, test data and test tools, among other

things. The management of these takes place during the entire scrum project. The scrum
team is often expected to set up and maintain the test infrastructure itself. This means that,

166



in this situation, there must be enough team members with sufficient knowledge to do this
adequately.

In the situation where the test infrastructure occurs outside of the team, it is essential that
response times are at a minimum. The test infrastructure must be stable, in view of the short
duration of a sprint and the short period in which the test must take place.

Problems in the test infrastructure can have a great influence on the progress of the
activities in the sprint.

Preparation
The evaluation of the test basis is an activity that is performed for each product backlog

item and begins right at the outset of the project. Evaluating the product backlog items
takes place in parallel to the development of other product backlog items (see figure 33).

preparation

project planning sprint planning review retrospective

Figure 33. Preparation activities.

By requesting an explanation of every product backlog item from, or by posing critical
questions to the product owner and the user (with knowledge of the subject matter) and
the developer (with technical knowledge), the tester can obtain insight info the criteria
that the product backlog item has to fulfill. Of course, this remains an interaction, because
the critical questions enable the other team members to make qualitative improvements
to their products. Not everything has to be documented; it is more important to
communicate so that no information is lost.

When the tester has sufficient information to specify test cases, the evaluation —
preparation phase — of the product backlog item has been completed. Writing a
testability review is superfluous in this situation, because all interested parties have already
been informed and any necessary measures have already been taken. If supplementary
criteria have been included in the definition of done, these must be met.

If another team member — other than the tester — is allocated a test role, it may be useful
to give this member a checklist on the basis of which the evaluation can be executed. This
checklist contains questions about the completeness and consistency of the product
backlog item, the degree to which the chosen test design technique can be applied, etc.
This ought to guarantee the quality and uniformity of the evaluation.

On the basis of the evaluation results, the product risk analysis and the test strategy may
have to be adjusted or a different test design technique may have to be chosen.

167



Specification

The specification of the test cases is an activity that is executed for every product backlog
item. The specification takes place in the sprint (see figure 34).

f \

specification

project planning sprint planning review retrospective

Figure 34. Specification activities.

In concrete terms this means that, if a test strategy table (figure 29) has been set up, the
test cases for the relevant product backlog item are created according to the test design
techniques assighed to that product backlog item.

The depth with which the test cases should be documented may depend on the
demands made by the organization in connection with the transferability, repeatability
and test automation requirements or the rules and regulations. In that case, this is
documented in the definition of done. In all other cases, the documentation must have
the degree of depth that enables the tester to execute the tests.

In view of the short lead time of a sprint, it is advisable to automate the tests immediately,
or atf least set them up in such a way that they can be automated. Unit tests are almost
always executed in an automated way — this can be specified in a definition of done —
and, in order to become familiar with both the technique and the product, it is advisable
to involve the tester in this process.

When carrying out evaluations, the tester frequently receives a great deal of product
information from the product owner, user and developer, which is processed immediately
in the test cases, but is not always incorporated into the product backlog items themselves
or other design products. In practice, it regularly furns out that the test cases contain more
product information than the original product backlog items. As such, the test cases form
a valuable source of knowledge, which can offer benefits in subsequent sprints and
projects. One should ensure, certainly in this situation, that the preservation of testware is
specified in the definition of done.

Execution

The execution of the test cases for a product backlog item is often done parallel to the
test execution of other product backlog items (see figure 35).

168



R

) |
Y |

project planning sprint planning review retrospective

Figure 35. Execution activities.

The execution of the pretest is generally limited in magnitude and sometimes not even
necessary. After all, the tester is present in the team, watches the unit tests, and knows
exactly what to expect. Due to the absence of fransfer moments, to independent test
teams for example, the execution of a pretest becomes superfluous.

During the execution of the tests, any defects are revealed.
Test-driven development

Scrum projects often use a test-driven development (TDD) approach. This is an approach
for software development in which tests are written first, and only then is the code written.
Although TDD is actually more of an eXtreme Programming approach than a scrum
approach, it is nevertheless frequently used in scrum. A few advantages of TDD are: it is
oriented to the perspective of the user. The test cases for which the code is written are
based on the backlog items that have been formulated from the standpoint of the
product owner. Due to the fact that all code is tested right from the start, this stimulates
more frust on the party of the product owner.

Wherever there are advantages there are also disadvantages: in TDD, the programmer
writes both the (unit) tests and the code for the application. This means that if the
programmer overlooks something, this will be missing from both the test and in the code. A
pitfall that occasionally occurs in real-life practice is the meager attention given to or even
total absence of the performance of infegration and system tests. These problems can be
avoided with a good PRA and test strategy.

Test automation

As mentioned previously, it is advisable to execute the tests in an automated way. This
certainly applies to unit and regression tests. But other tests can also benefit from
automation, as a component of the continuous build and of integration strategies, for
example. As is the case with many aspects, the actual plan to develop and execute an
automated test ought to be included in the definition of done.

In practice, various solutions are chosen for the automation itself, sometimes during the
sprint by the team members themselves, sometimes parallel o the sprint and by others.
Another approach that is occasionally applied in practice is to automate test cases,
created and manually executed during the sprint, parallel to the next sprint and to include
them in a regression test. In the subsequent sprint, a regression test can be executed in an

169



automated way. This takes place parallel to the execution of the manual test cases of the
corresponding sprint. And so on. At the end of the project — or perhaps just afterwards —
a complete automated regression test will then be available. Here too, this must also be a
part of the definition of done.

Completion

The evaluation of the test process dovetails perfectly with the past (sprint) refrospective,
after which suggestions for improvement must be implemented in the following sprint as
much as possible.

The preservation of the testware takes place during or at the end of the sprint or at the
end of the project (see figure 36). Which and how much testware should be preserved,
and whether or not a configuration management tool should be used, is specified in the
definition of done.

A scrum project always consists of more than one sprint. Otherwise it is not worthwhile
setting up a whole project. It is also important to pay attention to the construction of a
regression test set. This can be done by, for example, including the most important test
cases from the current sprint in a regression test set. Which of them are the most important
can be determined with the aid of the risk table (see figure 28). The magnitude of this set
increases with each sprint. And if a regression test must be executed in a following sprint, in
addition to the testing of current items, there is often too little fime to do everything. It is
therefore advisable, prior o the formulation of a regression test, to reflect on how the
regression fest could be executed in an automated way.

completion

project planning sprint planning review retrospective

Figure 36. Completion activities.

‘Responding to change' is an agile value that applies not only to changes in backlog
items, but also to changes in roles and feam set-ups. This response to changes, in test roles
for example, can only be performed properly if sufficient attention is paid to maintainable,
transferable and reusable testware. In this situation, testware management is an important
aid. And here too, it is again essential that this be included in the definition of done.

4.1.5 Process: acceptance and system tests

The acceptance test and system test are considered as autonomous processes to be
organized. They have their own test plan, their own budget, and often their own test
environment to. They are processes running parallel to the development process, which
must be started while the functional specifications are created. The TMap life cycle model

170



is used both in the creation of the test plan and in the execution of the other activities in
the test process.

Life cycle model

Like a system development process, a test process consists of a number of different
activities. A test life cycle model is necessary to structure the various activities and their
mutual order and dependencies. The life cycle model is a generic model. It can be
applied to all test levels and test types and used in parallel with the life cycle models for
system development. In the TMap life cycle model, the test activities are divided across
seven phases: Planning, Confrol, Setting up and maintaining infrastructure, Preparation,
Specification, Execution and Completion (see figure 37 “TMap life cycle model”). Each
phase is split up intfo a number of activities.

Using a test life cycle model enables the organization to keep an overview during the test
process. By recording what has to be done when, how, with what, where, by whom, etc
the claims to and the relationships with other aspects like techniques, infrastructure and
organization are made automatically.

rm

Control

/ Plan / Prep / Spec / Exec / Comp
/ g Infra !
\

) bl
Planning  Setting up and maintaining infrastructure

Figure 37. TMap life cycle model

The critical path and the shape of the life cycle model

If we were to compare the test process with an iceberg, only the Execution phase would
be ‘visible'. This means that only the Execution phase should be on the ‘critical path’ of a
project. All activities in the other phases can be done either before or after.

The form of the life cycle model (parallelogram) shows that the test phases do not have to
be executed strictly sequentially.

Test life cycle model relationships

The relationship between the TMap test life cycle and system development life cycle
depends on the system development method used and the relevant test level. However,
two ‘fixed’ relationships can be indicated. The start of the Preparation phase has a
relationship with the moment at which the test basis becomes available; the start of the
Execution phase has a relationship with the moment at which the test object becomes
available.

Planning phase

The activities to be executed in the Planning phase create the basis for a manageable
and high-quality test process. It is therefore important to start this phase as quickly as
possible. The planning phase is an important test phase but is alimost always
underestimated. Often, the framework for a certain test level is are already defined at the

171



overall level in a master test plan. In this case, the detailed elaboration occurs in this
phase.

After the test assignment has been finalized, an overall infroduction to the test basis,
subject matter and organization (of the project) is made. It is impossible to test the system
completely. Most organizations do not have the fime and money for that. This is why the
test strategy, estimate and planning are determined according to a risk analysis process
(BDTM steps 1 through 4), of course always in consultation with the client. It is then
determined which test techniques must be used (BDTM step 5). The objective is to realize
the best achievable coverage at the right place within the defined BDTM frameworks. The
first steps in setting up the test organization and test infrastructure are also made. These
activities are executed and laid down in the test plan for the relevant test level at the
beginning of the test process.

Control phase

The primary test process is rarely executed according fo plan. As such, the execution of
the test plan also has fo be monitored and adjusted, if necessary. This is done in the
Control phase. The aim of the activities in this phase is to confrol and report on the test
process in an opfimal manner, such that the client has adequate insight info and control
over the progress and qudlity of the test process and quality of the test object.

The test manager and/or administrator manage the test process, infrastructure and test
products. Based on these data, the test manager analyses possible frends. He also ensures
that he keeps well informed of the developments beyond testing, such as delays in
development, upcoming big change proposals, and project adjustment. If necessary, the
test manager proposes specific control measures to the client.

Information is the main product of testing. To this end, the test manager creates different
kinds of reports for the various target groups, taking account of the BDTM aspects of result,
risks, fime and cost (BDTM step 6).

Setting up and maintaining infrastructure phase

The Setting up and maintaining infrastructure phase aims to care for the required test
infrastructure and resources. A distinction is made between test environments, test tools
and workplaces.

Setting up and maintaining the infrastructure represents a specific expertise. Testers
generally have limited knowledge in this respect, but are highly dependent on it. No test
can be executed without an infrastructure. All responsibilities in relation to setting up and
maintaining infrastructure are therefore usually assigned to a separate management
department. In a testing programme, therefore, the team will have to collaborate closely
with these other parties that may be external to the organization. This means that fest
managers are in a situation in which they do not have confrol over the setup and
mainfenance of the infrastructure, but depend on it. This makes the setup and
maintenance of the infrastructure an important area of concern for the test manager. It is
a separate phase in the TMap life cycle model to maintain focus on it during the test. This
phase runs in parallel to the Preparation, Specification, Execution and Completion phases.
Dependencies with activities in other TMap test phases exist for some Setting up and
maintaining infrastructure activities.

172



Preparation phase

The testability review of the test basis is done in the Preparation phase. The ultimate goal of
this phase is to have access to a test basis of adequate quality fo design the tests, which
has been agreed with the client of the test.

Furthermore an early intake of the testability review of the test basis improves quality and
prevents potential costly mistakes. This is because the development tfeam works on
developing the new information system on the basis of system documentation (which is
part of the test basis). This documentation may contain errors that can cause a lot of —
often costly — correction work if they are not detected in a timely manner. The earlier an
error is found in a development process, the easier (and cheaper) it can be repaired.

Specification phase

The Specification phase specifies the required tests and starting situation(s). The aim is to
prepare as much as possible so that tests can be executed as quickly as possible when the
developers deliver the test object. This phase starts once testability review of the test basis
is completed successfully. The test specification runs in parallel to, and in the shadow of,
the realization of the software.

Execution phase

The aim of the Execution phase is to gain insight into the quality of the test object by
executing the agreed tests.

The actual execution of the test starts when the test object, or a separately testable part
of the test object, is delivered. The test object is first checked for completeness. It is then
installed in the test environment to assess whether it functions as required. This is achieved
by executing a first test, the so-called pretest. This is an overall test fo examine whether the
information system to be tested, in combination with the test infrastructure, has sufficient
quality for extensive testing. The central starting point is prepared if this is the case. The test
can be executed on the basis of the test scripts created in the Specification phase. In this
case, the starting point must be prepared for the test scripts that are to be executed. The
test results are verified during execution. The differences between the predicted and
actual results are registered, often in the form of a defects report.

Completion phase

The structured test method of TMap can yield many benefits in the repeatability of the

process. It allows products to be reused in subsequent tests if they comply with certain

requirements. This may speed up certain activities. Products may be tangible things like
test cases or test environments (testware), but also non-tangible things like experience

(process evaluation).

When preserving the testware, a selection is made from the often large quantities of
testware. Testware means, among other things, the test cases, test scripts and description
of the test infrastructure. During the test process, an attempt was made to keep the test
cases in line with the test basis and the developed system. If this was not (entirely)
successful, the selected test cases are first updated in the Completion phase before the
testware is preserved. The advantage of preserving testware this way is that it can be
upgraded with limited effort when the system is changed to execute a (regression) test, for
instance. There is therefore no need to design a completely new test.

Furthermore, the test process is evaluated in this phase. The aim is to learn from the

experiences gained and to apply these lessons learned in a new test, if any. It also serves
as input for the final report, which the test manager creates in the Confrol phase.

173



4.1.6 Process: development tests

Development testing is understood to mean testing using knowledge of the technical
implementation of the system. This starts with testing the first/smallest parts of the system:
routines, units, programs, modules, objects, etc. After it has been established that the most
elementary parts of the system are of acceptable quality, the larger parts of the system
are subjected to integral testing. The emphasis here is on data throughput and the
interfacing between e.g. the units up o the subsystem level.

Place of development tests

The development tests are an integral part of the development work executed by the
developer. They are not organized as an autonomous process for an independent team.
Despite that, a number of different activities for the development test process, with their
mutual order and dependencies, can be identified and described with the aid of the
TMap life cycle model. The detailed elaboration may vary per project or organization and
depends, among other things, on the development method used and the availability of
certain quality measures.

An important quality measure is the concept of the agreed quality. To this end, the
expectations of the client in relation to the craftsmanship and product quality must be
made explicit during the planning to set up development testing. Examples of other
quality measures are: test-driven development, pair programming, code review,
continuous integration, and the application integrator approach.

Differences between development and system/acceptance tests

The development test requires its “own” approach that provides adequate elaboration of

the differences between the development test and system/acceptance test as described

below:

* As opposed to the system and acceptance tests, development tests cannot be
organized as autonomous processes for more or less independent feames.

« Development testing uses knowledge of the technical implementation of the system,
thereby detecting another type of defects than system and acceptance tests.

* Inthe development test, the person detecting the defects is often the same as the one
who solves the defects.

» The perspective of development testing is that all detected defects are solved before
the software is handed over.

« Itis the first testing activity, which means that all defects are sfill in the product.

Usually, the developers themselves execute development tests.

4.2 Test professionals

421 Infroduction

A great variety of expertise is required for a tester to be able to function well in the
discipline of testing. A tester needs fo have knowledge of:

+ The domain (e.g. logistical processes or financial reports)

e The infrastructure (test environment, development platform, test tools)

o Testing itself.

The management is responsible for ensuring that the right person with the right expertise
has the right job, preferably in collaboration with personnel and training experts. A
carefully controlled inflow and internal mobility policy supported by related training for test
personnel are required. However, the negative image of testing makes suitable and
experienced test personnel scarce.

174



The challenge for HRM lies in this combination of the negative image on the one hand
and the importance of festing on the other, who can we find to execute this task and,
more particularly, how can we keep them happy? An important tool to achieve such
satisfaction is to offer the tester a career path.

This section discusses how to handle this issue. Below, “Points of concern™ devotes
attention to a number of points that require attention when setting up HRM for test
professionals. The section on “Characteristics” describes what makes a tester a tester.
What, forinstance, are the personal characteristics of a testere The next section (“Career
path”) gives insight into a possible career structure for testers, followed by a section
(“Positions”) describing the possible positions. Finally, the last section “Training” discusses
the aspect of training.

422 Points of concern

Despite the fact that everyone is aware of the use and added value of testing these days,
its image is not exemplary in every organization. Sometimes a test position is considered
boring, mind-numbing and not very challenging. Or, it is perceived as the final stop in
one’s career or a necessary side-road when there is really nothing else fo do. We describe
a number of points of concern to set up HRM for test professionals below.

Tasks, authorizations and responsibilities

Many organizations have a comprehensive competency profile, the growth opportunities
(in roles and salaries) and the available courses for roles and jobs. Such a profile is
sometimes missing for test professionals, with the excuse that testing is a one-off activity for
instance. It may be clear that this is not the case. This is why a written career structure is
necessary for testers as well.

In more detail

Growth opportunities for testers

The job descripfion of a tester must make clear the growth opportunities both within and
ouftside the discipline of testing. Since testing acts at the crossroads of many professions,
there is a range of (external) directions for growth. For instance, a tester who is regularly
involved in testing a specific business application may evolve into a process analyst for
that specific domain. Something that often happens as well is that an experienced test
manager is asked to become a project manager.

Training options

Since testing is a risk-mitigating measure, a testeris a risk in and of himself. If the test
professional does not test correctly or adequately, certain risks cannot be resolved. As
such, it is important for a tester to know not only what well structured testing is, but also
what he is testing. Taking the definition of a product risk in account (see also section 2.6
“Building Block 6: Product Risk Analysis”), the tester must have a feeling for the domain
(damage part) and the fechnology (chance of failure part) on which the system is based.
He must master them and know where the risks are generally (e.g. that one calculation or
that one specific combination of architecture and hardware). Concretely, this means that
testers, too, can (must) attend courses relating to e.g. the tool that is used for
programming or the domain for which the solution is being built.

Workplace location

Because testing is at the crossroads of many professions, testers have a lot of contacts with
the professionals in these disciplines. Putting the testers in the middle is killing two birds with

175



one stone. Theirimage is that they are fruly af the crossroads, and there they have a lot of
contacts. There are examples of an improved test process after the test team physically
moved fo the ‘centre’ of the organization. Among other things, it improved the mutual
respect between programmers and testers, which in turn had a positive impact on quality.

Performance reviews

Performance reviews are generally performed by a superior with experience in the tasks
executed by the person reviewed. This is the only way to achieve an objective picture of
the past period and reach agreements. It is done this way in many IT disciplines. A
programmer, for instance, is assessed by a project leader who used to work in
programming himself. An information analyst is assessed by a business analyst with a similar
past. Testers are often reviewed by the project leader. In his current role he has a lof to do
with it, but he was never a tester himself. To avoid any suspicion of conflicting interests, a
tester should be assessed by a superior orimmediate stakeholder with actual testing
experience. For instance the test coordinator or fest manager.

Compensation

One present-day trend is to offer a variable salary in addition to a fixed salary. The size of
the variable component (bonus) depends on the realization of certain objectives (Key
Performance Indicators or KPIs). A tester in an organization has different interests than e.g.
an information analyst, programmer or project leader. A test professional must be held
accountable for other results. The situation in which everyone (including the tester) is held
accountable for achieving the project planning is not ideal. The testeris at the end of the
workflow and is often —incorrectly — perceived as the one causing the delays. It is better to
assess a fester on the basis of his work’s results. Examples are achieving his planning for one
test cycle or the number of incidents during production. Clearly, a number of principles
apply in this context. Never award a bonus to a tester for the number of defects detected,
because this depends on the quality of the software (and is therefore someone else’s
point of concern).

423 Characteristics

What are a tester's characteristics, in other words, what properties must a person have to
be an ideal tester? In the first place, the ideal tester does not exist. It varies per situation.
We can, however, list a number of generic properties:

Communication, spoken and written

The tester maintains contacts with many different parties. For instance, he talks to e.g. the
programmer, the information analyst, the project leader and other testers. It is important
for a tester to be able to understand the interests of his discussion partners and
communicate effectively. Written communication is important to record defects and write
reports.

Accurate and analytical

A tester must focus on detail. It is important to establish for every requirement or wish what
is actually being asked. In case of doubft, questions must be asked. It is important for the
tester to go about his job analytically and refrain from making assumptions. A test basis is
at the basis of his test, if this is not complete or contains defects, it is registered as a defect.
A tester must never ever make assumptions in this respect, even though they may be self-
evident.

Example

176




A test of a financial application required sums to be shown in Euros and dollars. The
requirement contained a list of screens in which this occurred. Careful analysis by the
tester showed that there were more screens in which this could occur. When the client was
questioned, it was found that the requirement was indeed incomplete and the list of
screens was modified. If the tester had not performed a full analysis, incomplete screens
would have been taken into production.

Convincing and persevering

A tester communicates the detected defects to the party that caused them. This is where

the extent to which the testeris convincing plays a part because the receiving party must

consider the reported defects as actual defects. The tester must have power of conviction
and persevere in affirming the importance of the quality of the product.

Objective and constructively critical
When a defect is communicated or questions are asked about a requirement, it is

important to do so objectively. Comments like “bad software”, “again an incorrect
requirement” or “irritating colors” should not be used. In discussions about defects, it is
important that the tester makes the problem clear to the other parties in a constructive,
positive way. This means a certain level of diplomacy and refraining from pointing fingers

at various parties.

Creative

The tester must simulate reality o make a statement about the quality of the software. Test
cases are created, test data compiled, and a test environment defined for this purpose.
This requires creativity.

Sensitive

The testeris at a crossroads between professions. The point of gravity of the tester’s
activities lies at the end of a process, when the pressure is highest. The tester must be
aware of the tensions and interests and handle them correctly, so that the required
objectives can be realized.

4.3 Acceptance and System Tests

4.3.1 Infroduction

Acceptance test and system test

This chapter describes the TMap life cycle model, with the associated activities, for the test
levels acceptance test and system test. Both can actually be considered (and therefore
organized) as autonomous processes. They have their own test plan, their own budget,
and often their own test environment to execute the test. They are processes running
parallel fo the development process, which must be started by preference while the
functional specifications are being created.

A separatfion can be made in a development process between the client on the one
hand and the supplier on the other. In the context of testing, the first group is summarized
as the accepting (demanding) party and the second as the delivering party. Each of
these parties has its own responsibility in testing. The supplier executes the system test to
determine whether the system complies with the functional and technical specifications.
This demonstrates that everything that needs to be delivered is actually being delivered.
After the supplier has executed the system test, reworked the detected defects and
subjected them to a retest with a positive result, the system is offered to the client for

177




acceptance. The accepting party wants to determine, with the test, whether what has
been asked for is actually being delivered and whether it can do with the product what it
wants fo/must do.

TMap life cycle model

The process of the acceptance and system tests consists of a number of different
activities. The TMap life cycle model is used to map the various activities, with their mutual
order and dependencies. It is a generic model and can be applied for both test levels.
However, the acceptance test and the system test each give their own interpretation to
the life cycle model. In the TMap life cycle model the test activities are divided over seven
phases (see figure 38 “TMap life cycle model”). These are the phases Planning, Control,
Setting up and maintaining infrastructure, Preparation, Specification, Execution and
Completion.

Preparation Specification Execution Completion

\ N Control !

Figure 38. TMap life cycle model

In the Planning phase, the test manager formulates a coherent approach that is
supported by the client to adequately execute the test assignment. This is Iaid down in the
test plan. In the Conftrol phase the activities in the test plan are executed, monitored, and
adjusted if necessary. The Setting up and maintaining infrastructure phase aims to provide
the required test infrastructure that is used in the various TMap phases and activities. The
Preparation phase aims to have access to a test basis, agreed with the client of the test, of
adequate quality to design the test cases. The tests are specified in the Specification
phase and executed in the Execution phase. This provides insight info the quality of the
test object. The test assignment is concluded in the Completion phase. This phase offers
the opportunity to learn lessons from experiences gained in the project. Furthermore
activities are executed to guarantee reuse of products.

The phases described above do not always have to be executed strictly sequentially. For
instance, test cases for a part of the test may still be specified (Specification phase) while
the test execution (Execution phase) has already begun for another part of the test. This is
a situation that often occurs in projects in which there is phased delivery of software. We
also recommend making preparations for the activities in the Completion phase as early
as during the Specification phase. This phenomenon — where phases do not have to be
executed sequentially - is expressed in the TMap life cycle model by the sloping lines
between the phases. This results in the characteristic form of the model: the parallelogram.

In more detail
Retesting in the TMap life cycle model

The life cycle model also provides space for retesting. Retests occur when defects are
detected while executing the test cases. If a retest must be prepared and executed, it

178



may be necessary to go through some phases of the TMap life cycle model again.
Depending on the situation, this may be limited to the Execution phase, e.g. if only defects
in the software are to be solved. If defects in the test basis must be solved, it may be
necessary to (re)plan the retest completely (in particular in the case of a extensive rework
action of the test basis). The phases Preparation, Specification and Execution must then all
be gone through again.

When the life cycle model is related to the system development life cycle, a number of
relationships come to light. Figure 39 “Relationship between TMap life cycle and system
development life cycle " shows an example of these relationships.

(AR ENERNEERNN)

Figure 39. Relationship between TMap test phasing and system development phasing

The figure shows that the preparation phase of the TMap test life cycle can start once the
test basis has been delivered. The test basis is created in the system development phases
FD (functional design) and/or TD (technical design). After these system development
phases, the realization of the test object begins (the system development phase REAL).
The test (TEST) starts as soon as the test object is delivered. The next system development
phase is the implementation phase (IMPL). This example demonstrates that only the TMap
Execution phase is on the critical path of the project (the critical path is shown as a dotted
line). All other test phases are executed in parallel to the other system development
phases and, if ready in time, are not on the critical path.

In more detail

TMap life cycle model in relation to development models

The TMap life cycle model can be applied within various system development models. It
does not matter whether system development occurs on the basis of principles such as
waterfall, iterative orincrements. The reason is that every system development model has
the system development phasing as shown in figure 39 “Relationship between TMap life
cycle and system development phasing”. In iterative and incremental development (e.g.
the RUP and DSDM methods), the first development phases in the model (FD, TD and REAL)
must be seen as intermediary products. These are then tested (TEST) and integrated (INT).
Figure 40 “Relationship TMap life cycle with increments” shows this schematically.

179



Ctrl

/Plan/|aVPrep%pec/ Exe/Comp/mVPrep/pey Exec%omp PIan%rep pe/Exec%on%

Infra

| Increment 1 | Increment 2 | Increment 3 |

''D 7D REAL ' TEST INT'FD TD' REAL ' TEST (INTFD TD'  REAL ' TEST INT

Figure 40. Relationship TMap life cycle with increments

At the project level, above all increments, the phases Planning, Control and Setting up
and maintaining infrastructure are executed. The phases Planning, Preparation,
Specification, Execution and Completion apply for every increment. The Planning phase in
the increments is in close relationship to the master Control phase, hence the open link
between the two. In view of the repetitive nature of iterative and incremental
development, we must emphasize the repeatability of the tests. This can be achieved by
e.g. the use of test tools and adequate testware management.

43.2 Planning phase

Aim

Formulating a cohesive and broadly supported approach with which the test assignment
can be successfully executed. An important part of the planning phase is the creation of
the test plan, for the purpose of informing the client and other stakeholders concerning
the approach, schedule, budget, activities and the (end) products to be delivered in
relation to the test process. If an overall master test plan exists, the test plan should be
derived from if.

Context

All the steps of the planning phase should be gone through. The results are usually
established in a separate test plan, if the test level is organized as a stand-alone activity. In
some cases, particularly with iterative or agile development, the test level is integrated into
the total process and the test plan is part of the project plan. The effort required to create
the plan depends on what is already available. The presence of a master test plan, of
Generic Test Agreements, or a Testing line organization with instructions, tfemplates and
standards can make creating the test plan significantly easier, as it is easy to refer to them.
In creating the test plan, the test manager should allow for the possible and the
impossible. An important factor here is the existing “testing maturity”, or the quality of the
test process. If there is familiarity with test phasing, if test tools are available and the testers
are using test design techniques, how are the management and reporting normally
managed? If the testing is not very mature, the test manager cannot expect too much
from the test process or the testers involved in it. This applies to a lesser extent to the
maturity of the development or maintenance process that surrounds testing. If this is
chaotic and unmanageable, it is probably inadvisable to invest in the “perfect” test
process; a “reasonable” test process will suffice.

Preconditions

To be able to make a meaningful start on the creation of the test plan, the following points
should be known:

e The client for the test level

¢« Aim and importance of the system or package fo the organization

180



+ General requirements

« The organization of the development, maintenance or implementation process

« The (delivery) plan for the system to be developed or maintained, or package fo
be implemented

« The method of developing or maintaining the system or implementing the
package

- If thereis a master test plan, it should be fixed and approved

* Insightinto the development and production environment, so that the test
environment can be defined.

If this information is not yet available, for example because the development approach is
still unknown, it will have a negative effect on the lead time, the effort required for the
creation of the plan, or on the quality and required degree of detail.

Also required are the willingness and opportunity to agree on all kinds of aspects of the
test process.

Method of operation

The test manager, as arule, is the originator of the test plan. Ideally, a master test plan will
be available. On this basis and in consultation with the client, he will formulate the
assignment, making an allowance for the four BDTM [Business Driven Test Management]
aspects of Result, Risks, Time and Costs (see section 3.1 “Business driven explained”).
Subsequently, the test manager will prepare himself for the forthcoming phase by holding
various discussions with stakeholders and consulting other sources of information, such as
documentation. At the same time, he defines the assignment further in close co-operation
with the client, and determines the scope of the test level.

In the event that, for the master test plan, a product risk analysis has not been executed,
orif itis too general, a detailed analysis is carried out with the client and other
stakeholders. This is done in order to establish the required results of the testing for the client
(the test goals) and evaluate the risk level of the parts (object parts) and characteristics of
the system or package to be tested. This analysis forms the basis of the test strategy and
the process advances to an iterative stage. As part of the strategy based on the product
risk analysis the tester determines the characteristics/object parts that should be tested,
and with which test type and with which test intensity (the greater the risk, the greater the
test intensity). Then the test costs are estimated in outline form and the test activities are
planned (covering the biggest risks as early as possible). This is to be agreed upon by the
client and other stakeholders and, depending on their views, possibly revised. In that case,
the steps are then gone through again. In accordance with BDTM, the client therefore has
a clear understanding of the test process and can manage the balance of Time and
Money versus Result and Risk. Subsequent to this, the test manager refines the strategy
further by determining test units and translating the decisions about test intensity into firm
statements on which coverage is being aimed for. He then allocates test approach(es),
coverage types and/or test design techniques to the characteristic/object part
combinations, making allowance for the available test basis, resources and infrastructural
provisions. Using these fechniques, the test cases (and, for example, the checklists) are
designed and executed at a later stage..

Figure 41 illustrates this.

181



e A iti Business
and test goa Critical _ |proposals
2 success Require- processes

factors ments

......................... »| Risk indication per
T object part/characteristic
Client I

I Thorough/elementary testing
of obj. part/characteristic

I Test techniques "— Test basis, etc.

l

Time and money

Test cases

— v/vCharacteristics
. Object parts
= = Driver

........................... + = Involved

Figure 41. From assignment and test goals to test cases

Further steps in the plan formulation are that the test manager establishes the test basis,
defines the test products and builds up the test organization. The test manager also
defines the required infrastructure. Test management is furnished with procedures and
standards, supported as far as possible with tools. As a rule the elements available in the
master test plan, Generic Test Agreements, the test policy or the Testing line organization
are used.

The most important risks that threaten the test process are cited, and possible measures
are proposed for managing these risks. As a last step, the test manager has the test plan
approved by the client. While the activities in this subprocess are described in sequence,
in practice, certain activities will be done several times and/or in a different order. If, for
example, certain infrastructure parts are required for a test and cannot be supplied, then
the strategy may have to be adjusted.

Roles/responsibilities

The primary responsible role in the creation of the test plan is taken by the test manager,
sometimes known as the test coordinator.

In more detail

Test manager or test coordinator?

While in this section the term of test manager is consistently used to refer to the individual
responsible for the test process, in practice it is also often a test coordinator who heads the
system or acceptance test. The differences are more emotional and circumstantial than
objective, but generally, the following is the case:

* The more authorizations involved, the more the term of test manager is preferred

182



» The greater the scope of the test, ditto

» The greater the size of the test, ditto

« If an overall test manager is managing the overall test process, test coordinator is
preferred

« If atest coordinatoris coordinating the overall test process, test manager is preferred

Activities

The creation of the test plan involves the following activities:
1. Establishing the assignment

2. Understanding the assignment

3. Determining the test basis

4. Analyzing the product risks

5. Determining the test strategy

6. Estimating the effort

7. Determining the planning

8. Allocating test units and test techniques

9. Defining the test products

10. Defining the organization

11. Defining the infrastructure

12. Organizing the management

13. Determining the test project risks and countermeasures
14. Feedback and consolidation of the plan

The scheme below (figure 42) shows the sequence and the dependencies between the
various activifies. Every one of the activities may be gone through several times, as the
result of an activity may mean a previous activity needs to be revised. As earlier indicated
in the method of operation, the steps 5, 6 and 7 have an explicitly iterative character:

[ 9 |
3 H 4 s H e H 7 812H13|—|14
.

Figure 42. Creating the test plan

4.3.2.1 Establishing the assignment

|5 |
sforf sHal s HeH 7 8 12 H s H 14 F{ end |
Aim

A system test or acceptance fest starts with the formulation of the test assignment so that
the aim, tasks and responsibilities of the test level are made clear to everyone involved.

Method of operation

By establishing the assignment in the test plan, it is made clear to all the parties involved
(including the client) what the test process is meant to deliver, and expectations are
brought info line. The assignment for the test level should be compatible with the
assignment as set out in the master test plan.

183



An assignment for a test plan consists of the following elements:
+ Client

» Contractor

* Assignment

» Scope

+ Preconditions and assumptions.

These parts are explained below:

Client

The party who has commissioned the creation of the test plan and the execution of the
tests. It is important for the test level fo acknowledge who has commissioned the
execution of the test.

In more detail

In practice, we generally see the following possibilities for the various test levels:

System test - Project manager from the supplier
- Project manager /project leader for realization
Functional acceptance test - Project manager from client/acceptors
- Head of functional management
System integration test - Project manager from client /acceptors
- Head of functional management
User acceptance test - Project manager from client /acceptors
- Head of users organization
Production acceptance test | - Project manager from client /acceptors
- Head of system management

Contractor

Usually, a test manager or test coordinator is responsible for creating the fest plan and
executing the test assignment.

Assignment

The assignment should be set up in consultation with the client and should indicate the
aims and the scope of the festing.

In more detail

This would appear to be the obvious core of the activity — “Establishing the assignment™.
Despite the importance, in practice the formulation of the assignment is often somewhat
abstract and generic, in terms of “providing a quality assessment” or “providing insight into
risks”. It is mainly in the scope, preconditions and assumptions (and later the strategy) that
the total assignment is sharply defined.

In more detail
Iterations
Iterative or agile system development delivers a large number of (interim) releases or

prototypes for testing. It should be clear from the formulation of the assignment that such
an interim release or prototype may not be assessed on every aspect of a forthcoming

184




production system, but only on those aspects that are relevant to the interim release or
prototype itself.

As test manager, you should ideally gain a feel for what the guiding principle of the
project is in terms of BDTM. Is the client mainly concerned with Time or Costs, oris
Result/Risk the driving force? This is no easy task, for the initial reaction (“our maximum
budgetis € ...", and "the deadline of ... is set in concrete”) often seems crystal clear, but
on further questioning is not always so (“... and if the system then only has % of the
functionality?2”). Nevertheless, this insight will aid the test manager’s understanding and
facilitate later communication on the choices to be made. The sensitivity of this
information means that it is not necessarily established in the plan.

Additionally, the test regularly involves secondary requests. The client should allocate
budget and/or time available for these. Examples are:

« The creation of a standard maintenance test plan, to include all the reusable test

aspects

« Training and coaching of the employees in testing

« Improvement and structuring of the test method of operation employed

* Implementation of a test tool

« The setup, use and maintenance of a scalable regression test set

« Supply of (automated) testware for the testing of subsequent releases.

In more detail

Usually, the client makes resources (people and means) available, or pays for them, for
example, by hiring in people internally or externally. Payment usually takes place based on
the number of hours. In certain cases, particularly in the case of outsourcing, when the
testing is done by an external supplier, more creative agreements can be made. Below
are some possible constructions that appear in practice:

e Fixed-price
The supplier carries out the testing for a previously agreed fixed price. This usually
includes a fixed number of retests. In the event of a breakdown in the test process
owing to the client being unable to meet the set agreements, or if more (re)tests
are necessary than were agreed, additional charges are applied. In the other
cases, the risk is borne by the supplier.

» Fixed-price per test case
A variation on the above is that a fixed sum is agreed per test case to be specified
and executed.

» Fixed-date
Similar to fixed-price, but with a fixed date of completion

» Fixed-date, fixed-price
As above, with both a fixed price and a fixed date of completion

e Bonus-malus
In addition to the above, agreements can be made with the intent of distributing
the risk more satisfactorily among both parties. By doing this, the client pays the
supplier by the hour with the understanding that there is a fixed date or fixed price.
If the supplier requires fewer hours or less lead time, he is given a bonus in the form
of more money. And an example of malus: if after X amount of fime after going
into production, critical faults arise, or if the timeline or hours are exceeded, the
supplier gives a discount on the fees.

e Result sharing
An unconventional form is when the supplier is paid with a percentage of the
profits from the new system. In this case, the system is an investment for both the

185



client and the supplier, and both have every interest in a successful outcome. It will
be obvious that this involves big risks (but also opportunities).

Scope of operation

The limits of the test operation should be indicated here. This should preferably be more
specific than what is already stipulated in the master test plan. The following matters
should be taken into consideration (where applicable):

«  System(s)

« Conversions

« Administrative organization (AO) procedures

*  Quality characteristics (allocated in the master test plan)

« Interfaces with adjacent systems (is the interface being tested up to the other

system or up fo and including, or even to include the entire chain?).

In respect to changes, it is important to determine the parts of the above that are being
considered.
It is also important fo indicate the issues that are outside of the scope of the testing.
Besides those mentioned above, the following should be kept in mind:

« System changes that are notincluded in the project

+ Test activities that are carried out by other test levels or parties

* Reorganizations

« Possible future projects that influence the current project (particularly if there is a

lack of clarity concerning other projects).

Preconditions

Preconditions describe conditions set by third parties, such as the client, the project,
managers or users with regard to the test process and within which the test process must
operate.

For example

* Master test plan
The master test plan drives the setup and execution of the test level

«  Milestones
Often, as soon as the test assignment is issued, a number of milestones are
established, such as the delivery date of the test basis, the test object,
infrastructure and the date of going into production

* Available resources
The client often sets limits to the available people, resources and budget

* Norms and standards to be maintained
From within the (test) organization or the master test plan, certain requirements
may be set as regards method of operation, procedures, techniques, templates,
etc.

Assumptions

Assumptions are external circumstances or events that must come about in order for the
test process to succeed, but that are beyond the control of the test process. In other
words, the requirements that the test process sets other parties.

For example
*  Quality of preceding tests

The preceding tests, e.g. development or system tests are carried out in the agreed
manner

186



Quality of test object

The test object has the agreed entry quality. This should be established with the aid
of so-called entry criteria, which overlap with (but are not necessarily the same as)
the exit criteria of the preceding test

Support to be supplied

Within the test process there is a need for various forms of support, e.g. in respect of
the test basis, test object, domain knowledge and/or infrastructure. This support
may be required to a certain degree and/or for a certain period. Bear in mind, for
example, the availability of developers for solving obstructive defects during the
test execution. Usually, each test level has its own expertise. For instance, the users
acceptance test will have little need of domain knowledge support, while the
support needs will concern precisely the other types of expertise, such as technical
or test-method support

Changes in test basis and test object

The test team should be involved in the implementation of changes. In most cases,
this simply means following up the existing procedures within the system
development process. For example, the test manager should participate in the
Change Control Board in order to estimate the consequences of a change from
the test point of view

Delivery of the test object

The development team delivers the test object in a number of different but
efficiently testable parts, and takes responsibility for installation in the test
environment

Response time to defects

How quickly should the project react to the finding of defects. Below is an example
of such agreements:

Severity Priority Response time Lead time

Test-obstructive High 1 hour 4 hour

Severe defect High 1 hour 1 working day

Regular defect High 1 working day 2 working days

Regular defect Low 1 working day To be determined per defect
Cosmetic defect |Low 2 working days To be determined per defect

The test manager cannot make do with including these points in the plan and then
assuming when the plan is accepted that all the points have been organized. On the
contrary, he should first agree the points with the parties that own them, so that the points
constitute set agreements and not surprises. It is advisable to mention in the plan, per
assumption, for which stakeholder or parties these are infended.

For a checklist of possible preconditions and assumptions, please refer to www.tmap.net.

Products
The assignment, established in the test plan.

Techniques
Checklist of preconditions and assumptions (www.tmap.net).

Not applicable.

187




43.2.2 Understanding the assignment

1] K
U sH« s HeH 7 8I12H13H14Hend]
)

Aim
To obtain insight into the (project) organization, the aim and purpose of the system

development process, the system or package to be fested and the requirements to be
met, so that befter direction can be given to the other steps in the planning.

Method of operation

The method of operation covers the following activities:

1. ldentifying acceptors, using acceptance criteria and other information providers
2. Examining the available documentation

3. Conducting interviews

In practice, this activity is carried out in parallel with the formulation of the assignment. It is
also somewhat underestimated. Specifically, the test manager may speak to too few
stakeholders, although it is essential in the beginning to measure expectations adequately
and, as test manager, to ‘put the feelers out’ in all directions. This is necessary in order to
be able to carry out the following activities effectively and to manage the test process
successfully in the future.

1) Identifying acceptors, using acceptance criteria and other information providers

Usually the client is not the only stakeholder who has to accept the system; there are
generally others, and it is important to clarify who these accepting parties are. This is done
in consultation with the client. In practice, the test manager gets an opportunity here to
discuss with stakeholders at a high level in the organization (steering group members) and
to interpret their opinions and expectations. Often there is no other opportunity for this,
unless the test manager is in the (unfortunately) rare position of regularly participating in
the steering group discussions. It is important to establish which acceptors are to be
provided with information directly or indirectly during the project by means of test reports.
It should also be clear what requirements or acceptance criteria each acceptor is
proposing. These are the minimum qualitative requirements that the product must meet to
make it satisfactory to the acceptor. For the sake of clarity: the gathering of acceptance
criteria is not the responsibility of the testers, but it is input into the setup of the test process.
Acceptance criteria can be very diverse. Some examples are:
« Qualitative criteria as regards product and generation process, e.g. the number of
defects that may remain open
- Criteria as regards the environment, e.g. the infrastructure should be installed or the
users should have followed a training course
« Criteria in the form of (the detailing of) requirements of the product, e.g. ‘an order
should be processed within X seconds’.

Not all the acceptance criteria are relevant to testing. The first example has a

considerable overlap with the exit criteria for the test process. The second example is
usually less important to testing, and the third example is a form of test basis.

188



In more detail

Acceptance criteria pitfall

This latter use of acceptance criteria contains a danger. In practice, the following
sometimes happens: after establishing and freezing the requirements, users discover that
they have additional requirements. They then formulate these requirements as
acceptance criteria. In this way, acceptance criteria form the ‘back door’ for taking in
even more requirements. This is not a good method of operation. The only correct way is
to submit a change proposal to a Change Control Board.

Besides acceptor, various other parties/individuals can supply the test process with
relevant information. Bear in mind, for example:

In more detail

* The overall test manager, at coordinating level, for obtaining insight into the test
assignment and what is expected of the test or the test manager

* The (representatives of the) client, for obtaining insight into the business aims and the
‘culture’ as well as the aims and strategic importance of the system

» The project manager or quality management employee, for obtaining insight into the
steps and components of the development process and the correlations, with special
focus on the (expected) place of testing in this

» The domain experts from the user organization, for obtaining insight into the (required)
functionality of the system

» The designers, for obtaining insight into the system functionality to be developed

» System administrators, for obtaining insight into the (future) production environment of
the information system

» Testers, for obtaining insight info the test method of operation and test maturity of the
organization

» The suppliers of the test basis, the test object and the infrastructure, for guaranteeing
coordination at an early stage among the various stakeholders.

2) Examining the available documentation
The documentation provided by the client is examined. For example:

In more detail

» Test documentation, such as the master test plan or a Generic Test Agreements
document

e System documentation, such as stakeholder analyses, business or user requirements, or
an information analysis, system requirements, functional and technical design

e Project documentation, such as the plan of approach for the system development
process, organizational charts and responsibilities, the quality plan, review reports and a
function-point analysis

e A description of the system development method, including the norms and standards

e A description of the test method applied, including the norms and standards

e Evaluations and points of learning from previous tests that may be relevant to the
forthcoming test

e Contracts with suppliers

If the system development process relates to maintenance, then the availability and
usability of existing testware is also investigated.

3) Conducting interviews

189



The various parties involved in the system development process are interviewed. An
interview checklist is available at www.tmap.net.

The test manager asks the stakeholders questions concerning, besides the general

background of the system o be tested and the process to be followed:

* Their expectations about the results of the testing — what do they hope to see as the
end resulte This may relate to business processes supported by IT, realized user
requirements or use cases, change proposals, critical success factors, cited risks (fo be
covered) but also, for example, that the new system should have at least exactly the
same functionality as the old system (therefore no regression). These are referred to as
the test goals. Do they fit with the test goals of the master test plan2

Definition

A test goalis a goal that, for the client, is relevant for testing, often formulated in terms of
business processes supported by IT, realized user requirements or use cases, critical success
factors, change proposals or cited risks to be covered.

» Does the interviewee have an idea of what the characteristics are (usually the quality
characteristics) and object parts that operate in the above? Some people are able to
answer this very well, but it may be too complex for others. The test manager has to
estimate how much detail the discussion will allow

* Whatis the test basis, if any, that may or should be used later on as proof that the test
was thorough enough?

* Whatis the risk estimate of the test goals and/or characteristics/object parts? A risk is
defined here as the product of Damage x (Chance of defect x Frequency of use).
Often the interviewee will only be able to mention particular aspects of arisk, such as
the Damage, the Frequency of use or the Chance of a defect. That doesn’'t matter, for
it can be expanded upon in the next step, the product risk analysis

* Does the stakeholder wish to be reported to, and if so, at what level?

A point of focus here is that the number of types of reports should remain somewhat
restricted for practical reasons. If necessary, the test manager should discuss this with
the client.

It is also advisable where possible to consult those indirectly involved. For example, the EDP
auditors, the implementation manager, the future maintenance organization, etc.

Tip

Instead of individual interviews, a kick-off session could be organized with (a number of)
the relevant parties. The advantage of this is that the various viewpoints help to arrive
collectively at a clear picture. This often happens in particular when consultation is held to
determine the (test) impact of change proposals.

The test manager feeds back the findings of this activity to the client for verification.

Products
This activity delivers the following parts of the test plan:

- Stakeholders and acceptance criteria

The stakeholders relevant to the testing and their acceptance criteria
* Norms and standards

190




The standards employed are cited here. As regards testing, these can involve
instructions issuing from the Testing line organization, the master test plan or generic
test agreements, TMap, TPI or test manuals. Development standards, document
standards or quality norms that have to be or will be followed are also possibilities

* Basis of the test plan
Here the documents are mentioned that form the basis of this test plan. For
example, a master test plan, project plan, specific project or test plans, a specific
or a generic test method, generic test agreements, an implementation plan or
other documents that are of importance.

Techniques
Checklist ‘Understanding the assignment’ (www.tmap.net).

Tools
Not applicable.

191



43.2.3 Determining the test basis

BN [ 7 |
U sHaHsHeH 7 8'12H13H14Hend]
)

Aim
The unambiguous defining of the test basis, so that it is known at an early stage what the
test object is to be compared against.

Method of operation

The method of operation covers the following subactivities:
1. Defining the test basis
2. Identifying the fest basis

1) Defining the test basis

The test basis, or the gathering of all the written and unwritten requirements with which the
test object should comply, can take various forms. Bear in mind, for example,
requirements, acceptance criteria, functional designs, tfechnical designs, user manuals,
interviews, reports of meetings, legislation, but not forgetting the old system, a previous
release of the system, a prototype or even a domain expert. The gathering of non-
documented test basis in particular is difficult; further information on this is given in section
6.5 "Preparation Phase”. It is important when determining the test basis fo ensure that the
non-functional requirements are also known, such as e.g. requirements in respect of
performance or security.

In more detail

The individual test levels often make use of various sources for obtaining the product
requirements, against which testing is carried out in the test level. For example, the
acceptance fest is often focused on requirements that are described at the level of, let’s
say, business processes, whereas in the unit testing it is checked whether the technical
requirements pertaining to a specific unit have been met. The test basis will therefore not
be the same for all the test levels.

Something to be kept in mind in respect of the test basis is that these requirements should
be as concrete and measurable (testable) as possible to prevent misunderstandings. This is
often not the case in practice. Where possible, it can already be observed at this stage,
otherwise it will become apparent at the later stages of Preparation and Specification. It is
also possible that, at a later stage, it will be discovered that a requirement is very difficult
to test. In such cases, it is agreed with the client whether a simplified test is acceptable.

2) Identifying the test basis

Establish, as far as possible, the identfification of the relevant test basis. Bear in mind the
delivery date, version, status, etc.

Products
The test basis to be used, established in the test plan.

192



Techniques
Not applicable.

Tools
Not applicable.

193



43.2.4 Analyzing the product risks

BN [ 7 |
U 3|—|4}-‘-{5|—|6H7}—‘-{8}-—{12H13|—|14|—[end]
)

Aim
To have the participants and the test manager arrive at a common perspective about the
parts and characteristics of the system based on the risk level.

Method of operation

Testing is a measure for obtaining insight into the quality and related product risks of a
system or package when it is put intfo production by an organization. Since time and
resources are usually limited, it is important to determine the system parts or features that
will require extra or less test effort early in the process. Practical choices must be made
here. Performing a product risk analysis (PRA) will help determine the areas of focus for the
test.

A PRA within the framework of a test level is optional: if the master test plan PRA has
already been done in sufficient detail (i.e. af the level of characteristics and object parts),
this step can be skipped. If there is no master test plan PRA, it must first be determined
what the test goals are and what relationship they have with the characteristics/object
parts that are to be tested in the relevant test level. This is done in a similar way to the PRA
for the master test plan. If there is a master test plan PRA, but not at the level of object
parts, then the PRA should be further refined.

The execution of a product risk analysis is divided into the following subactivities:

1. Determining the participants

2. Determining the PRA approach

3. Preparing sessions/interviews

4, Collecting and analyzing product risks

5. Checking for completeness

In section 2.6 "“Building Block 6: Product risk analysis”, these steps are explained in detail.

Tips

+ A pointf to note is that the PRA session, if relevant, may be combined with (a part
of) the subsequent activity, ‘Determining the test strategy’.

+ With a PRA for a test level, the challenge is to allow the test goals, characteristics
and object parts to relate only to the scope of the test level. It is meaningless to
recognize security as a big risk if this characteristic has already been assigned to
another test level from within the master test plan.

Products

« The risk tables with test goals and possible object parts per characteristic with risk
indications, managed separately and optionally established in the test plan

« The PRA overview of characteristics/object parts with risk class, established in the
test plan.

194



Techniques

Product risk analysis (section 2.6);
Explanation of quality characteristics (section 4.4).

Tools
Not applicable.

195



4.3.2.5 Determining the test strategy

BN [ 7 |
U 3|—|4}-‘-{5|—|6H7}—‘-{8}-—{12H13|—|14|—[end]
)

Aim
To decide, based on the insight info the risk levels associated with the object

parts/characteristics of the system, on the test types to be used, and on the test intensity
for each (combination of) characteristic/object part of the system.

Method of operation

In defining the strategy for a test level, the choice is made about the test types and
thoroughness of testing, i.e. the extent to which the combinations of characteristics and
object parts are tested. This is dependent on the risk estimate from the PRA, or rather the
degree to which the client wishes to cover these risks, and how much time/money he
allocates forit.

To this end, the test manager makes a proposal for each combination of object
part/characteristic in respect of the required test types and test intensities.

Test types

In this, the test manager specifies what is to be tested out of a particular object part-
combination. At its simplest, this is the test of a quality characteristic, e.g. a functionality
test or performance test, but often it is possible, and necessary, to provide more insight.
Other test types are associated with the quality characteristic functionality, e.g. the multi-
user test, regression test or chain test. An overview of "Applied test types” is included at

www.tmap.net.

In more detail

Traditionally, most attention is given to testing functionality. More and more other
characteristics, like suitability, security, portability, performance and usability, are being
tested. Specifically the Internet has made these characteristics of systems more important
and full of risks. The characteristics can be tested using test design techniques or checklist,
just like functionality. Besides that, other points of attention and ways to test are available.

Test intensity
In determining the test intensity, a choice is made from the following possibilities:

oo Thorough explicit testing

oo Average explicit testing
Light explicit testing

E Evaluation

| Implicit testing
Testing in conjunction with another test type without making explicit test
cases; only observable defects are documented.
- If acellis left empty, this means that this particular evaluation or test level can ignore
the characteristic.

196



In more detail
The result of this step is described below:

Example of ST

Characteristic RC ST Subsys1 Subsys2 Total sys
MTP | MTP
Functionality n/a | n/a Aleee B/ee C/e
functional, functional, integration,
regression regression multi-user
Performance online B J - - C/e
random sample
in ST environment

RC MTP = Risk class assigned to the characteristic from within the master test plan

ST MTP = Test intensity assigned to the test (in this case, the system test) from within the
master test plan

n/a = not applicable, in the master test plan risk class and fest intensity are not
assigned to the characteristic, but to the combination object
part/characteristic

A = High risk class

B = Average risk class

C = Low risk class
The risk classes are taken from the PRA of the master test plan or (in more detail) from the
PRA of the test level itself.

The test manager then supplements this table with the necessary explanations. In the
above example, a functional test is to be carried out for subsystems 1 and 2 in respect of
the new and changed functionality, and a regression test in respect of the unchanged
parts will be furnished. Following the separate testing of subsystems 1 and 2, the totall
system will be tested as regards integration aspects; a multi-user test will also take place.
Performance will be tested in the non-representative ST environment for a limited number
of situations.

UAT example

Characteristic RC UAT Subsys1 Subsys2 Total sys
MTP MTP

Functionality n/a n/a Alee B/- C/e
functional regression

User-friendliness B oo C/I - B/ee

usability

Security A .

- authorization matrix B -/E -/E B/ee
authorization | authorization | process test
test fest

- application C - - C/e

penetration
test
Suitability B oo B/ C/e Afjooc
scenario test | scenario test | process test

197




In the above example, for subsystem 1 a functional test is performed again, using a
number of the test cases from the ST, but in the AT environment. If several deliveries are
made, a regression test on the total system takes place. A usability test in the own
environment is carried out and in other tests an implicit test of user-friendliness is carried
out. The authorization matrix is evaluated for correct content for subsystems 1 and 2. Also,
the business processes, or subprocesses, related to subsystems 1 and 2 are simulated by
means of running user scenarios. Subsequently, the operation of the total system is tested
in combination with the business processes. A light penetration test is also planned.

An inifial setup of the strategy is often possible in the PRA session or the PRA, and these
steps of the Strategy definition can be combined. If this doesn’t work, then the test
manager makes a proposal.

A point to note is that when the MTP indicates a thoroughness of ¢ e e for a particular test
level (e.g. ST) or a particular combination of characteristic/object part, this doesn’'t mean
that, in the ST, the entire system, or the combination of characteristic/object part, should
be tested in the greatest possible coverage, but that testing is required with greater test
intensity than average. This should also be evident from the MTP notes.

Tips

« With iterative or agile system development, the test strategy should focus on
regression fests in respect of the many interim releases (iterations, increments). Also,
the test (strategy) should be restricted to the characteristics of the interim release
and not formulate a strategy as if it concerns the final release. This appears easier
than it is, for in the PRA the users provide their risk estimate on the basis of the
expected final release.

» At the setfting up of the strategy, the test manager should make as much
allowance as possible for the consideration of costs, time and skills required. If he
knows that there is only a very limited budget or that the available people have no
experience in testing, he should avoid proposing ‘impossible’ strategies, such as
very expensive fests or very thorough test-design techniques (to prevent too may
feedback cycles).

- Itis advisable, when choosing between thorough and light testing of a
characteristic/object part, to make an immediate inventory of the test basis to be
used, as the availability and degree of detail of the test basis can influence the
budget and planning. Allowance can be made for this during these steps.

In more detail

Maintenance
The chance of defects is the principal difference between new-build and maintenance.
The formulation of the changes as object part facilitates the strategy. Several variations
are possible:

+ Alimited test, cimed only at the change

» A complete (re)testing of the function in which the change was made

» The testing of the correlation between the changed function and the functions

directly surrounding it
» A test of the entire system.

Regression test

198



The regression test of the system as a whole is recognized as well. It focuses on the
coherence between the changed and unchanged parts of the system, since this is where
the chances of regression are the greatest. If the PRA for the new-build is available, the risk
categories applied here to the characteristics/object parts can play a role in the
composition of this regression test. A regression test may be carried out to a full or limited
extent, depending on the risks and on the required test effort. It is very easy, with the aid of
the scalable regression test set (see section 6.6 “Specification Phase"”) to perform either a
thorough or a light regression test. This makes for flexibility in the testing of later releases.

Products

The test strategy, established in the test plan, with a brief description of the planned test
types and an indication of the importance per characteristic/object part.

Techniques
Strategy determination (as described in this section).

Tools
Not applicable.

199



4.3.2.6 Estimating the effort

KA
start sHaH s He«H7 8 12 H 13 H 14 | end

Aim
The estimation of the effort for the test level based on the test strategy, so that the client
can accept it or request adjustments.

Method of operation

An estimate may already be set out in the master test plan for the test level. Nevertheless,
this remains a necessary step. The test manager has to determine, on the basis of the
strategy created, how many hours and possibly how much money will be required. If these
exceed the margins of the allocation contained in the master test plan, the test manager
should work with the test manager of the overall test process to resolve these
discrepancies. Either the strategy or the estimate will need to be amended.

In practice, the number of test hours required almost always is a factor reflected in the
estimate. Another, less apparent, part of the estimate is the financial part. How much do
those hours coste Do they involve internal or external resources or even outfsourcinge What
are the fees? But also: how much do the test environment, fest tools and work stations
cost? If the client requires it, the test manager also must create a financial budget.

Subsequently, within a test level, the fime required for the various phases, such as Planning,
Confrol, Setting up and maintaining infrastructure, Preparation, Specification, Execution
and Completion is established. At the start of each test phase, the test manager estimates
the effort for the separate test activities.

In more detail

Estimation techniques
The various estimation techniques and the steps involved in arriving at an estimate are
described in section 4.10 “Estimation Techniques”. For a test plan, estimates can be made
based on:

» Ratio figures

+ Test object size

*  Work Breakdown Structure (WBS)

» Proportionate estimation

+ Test point analysis (TPA).
In order to increase the reliability of the estimate, you would be well advised to use your
own figures based on experience as well as other means and techniques of estimating.

Tips
+ Sometimes a total budget is imposed by the client for testing. This has to be spread
across the test phases and the characteristic/object part combinations. Some of

the techniques described in section 4.10 (Ratios and Work Breakdown Structure, in
particular) provide assistance here. It should also be examined whether the

200



budget is adequate. The following fips are useful, but much depends on the
experience of the test manager:

1) It is best to create an estimate by summing up the characteristic/test intensity
estimates (e.g. in PAT, a light performance test + a thorough security test = 120 +
200 hours = 320 hours).

2) Another option is to evaluate the total budget using a rule-of-thumb summing
up for test levels: 15% of the total project budget of 5,000 hours for the ST, 20% for
the AT = 750 and 1,000 hours respectively.

3) A third opftion is to employ a standard allocation formula for characteristics,
established on the basis of a number of experiences. An example is to give
Functionality, at risk category B, 70% of the total budget, at A, 80% and at C, 60%.
You can also do this with a fixed number of hours, e.g. User-friendliness could be
given 70 hours at category C, and up to 130 at category A (for an average
system). This will make it easier to assess the real value of the individual estimates
per test level /characteristic.

4) Compare the allocated budget with the budgets and total hours spent in the
course of comparable exercises in the past, both in the organization itself and if
possible in other, comparable, organizations.

The estimate should be assessed for real value and should come out at around the
level of the total assigned budget. Otherwise, adjustments will be necessary, by
opting for a higher total budget, or testing fewer characteristics and/or testing with
less test intensity.

The figures used above are redlistic examples. More information can be found in
section 4.10 “Estimation Techniques”.

A test intensity of ® ® ® for a characteristic in a particular test level (e.g.
Functionality in the ST), means that the system should be tested more intense than
average, not that the entire system should be tested in the greatest possible test
intensity. See also the comment under Test Strategy.

The creation of an estimate for the test has a wide margin of uncertainty. It is
important that the test manager make it clear to the stakeholders that the
estimate is based on a number of assumptions and may therefore have to be
revised later. A possible solution is the use of uncertainty margins. At the beginning
of the test, the margin would be, for example, around 40%; at the start of the test
execution this becomes around 25%, and somewhere in the middle it becomes
around 10%.

The link between estimate and test intensity (using specific test techniques) is
opaque. How much exira time does, for example, the application of the
elementary comparison test require as against the data combination teste Few
past figures are available for this, and much is done on the basis of the test
manager’s experience and intuition.

Various other factors (the quality of the testers, of the test object and test basis, test
environment and test tools) can also exert significant influence on the estimate.
These factors are either not known at the fime the estimate is made or their effect
on the estimate is very unclear. The test manager has to make assumptions here,
and if necessary include them as assumptions in the plan, and most certainly
should evaluate the assumptions as soon as possible.

It is difficult fo ‘sell’ the required maintenance test effort to management. A
general ‘testing image’ problem is that testing costs too much in management’s
view. With testing during maintenance, that is reinforced by the fact that testing

201



has a relatively big share in the maintenance effort — up o as much as 80%. This is
partly because the total test costs consist of fixed and variable costs. Fixed costs
refer to, for example, the effort required to prepare the test environment, or the
execution of a ‘standard’ regression test; variable costs refer to, for example, the
preparation and testing of implemented changes. With the testing of a small
change, the percentage of fixed costs is high, since, irespective of the size of the
change, the environment must always be prepared and the regression test run.
The greater the changes become, the more the fixed costs decrease in relative
terms. For example, with the testing of a change, a 4-hour regression test is always
run. If the testing of a change takes 8 hours in total, the fixed testing fime amounts
to 50% (4/8). If the testing of one or more changes takes a total of 40 hours, then
this decreases to 10% (4/40).

In general, the share of testing (fixed+variable) lies between 35% - 80% of all the
maintenance activities. It is up to the test manager to make this clear to the client
and to put the case for the importance (to the testing) of bigger, controlled
releases, in which many changes are bundled, over the implementation of a
constant procession of small changes.

Products

The estimate for the test level, in hours and optionally in money, supplied with assumptions
used in this, established in the test plan.

Techniques

Various estimation techniques (section 4.10)
Step-by-step plan for creating an estimate (section 4.10).

Tools

Planning and progress monitoring fools (spreadsheets for estimating the effort and for Test
Point Analysis are available at www.tmap.net).

202



4.3.2.7 Determining the planning

BN [ 7 |
U sHaHsHeH 8I12H13H14Hend]
B

Aim
The creation of as reliable as possible a planning for the test level, so that the client can
make allowance for this and can manage accordingly. The principle of the planning is to

find the most significant defects (the finding of which belongs within the scope of the test
level) first.

Method of operation

Based on the planning of the system development process and on the master test plan, a
planning for the test level is created. The test manager indicates the start and end date
per phase and the products to be delivered. The planning should cover at least:

e Activities to be carried out (at activity level per phase)

« Correlations with and dependencies on other activities (within or beyond the test

level and between the various phases and other test levels)

+ Time to be spent per phase

* Required and available resources (people and infrastructure)

* Required and available turnaround time

* Products to be delivered.

Depending on the client’s requirements, the financial consequences of the choices made
should be made visible in a financial planning. This means, for example, the setting out of
the costs in terms of time for the (internal and external) personnel, training, workstations,
test environment and test tools.

In more detail

In creating a planning, the following principles apply:

» The test strategy and estimated effort form the basis of the setup of the planning

* In agood planning, the characteristics/object parts designated as high risk are
tested as early as possible

»  With optimal planning, as far as possible only the test execution activities are
carried out on the critical path of the project

+ |If there are no past figures available in respect of the number of retests, it is
advisable to make allowance when creating a planning with one retest on
average. Based on past experience, it can be decided to allow more or less time
for retesting

«  With maintenance, in particular, and with iterative or agile development phases, it
is important to make allowance for the execution of regression tests

*  When creating a planning, make allowance for the required time of third parties.
For example, repair time for defects or time for preparing the test environment

» The transfer of the test object to, and installation in, the test environment often falls
between two stools in planning, or rather between the planning of the
development and testing activities. Particularly the first few times, this activity

203



appears to cost significant amounts of time — days rather than hours. Make
allowance for this

Try to streamline the in- and outflow of personnel, so that peaks and troughs in staff
levels are avoided.

Further planning indications can be found in the IT classic [Brooks, 1975/1995].

In more detail

Required information
In order to set up a planning based on the estimated effort, additional information is
required concerning the following subjects:

Available resources

Worth noting here is that with the estimation of the effort, only limited allowance is
made for the available resources. The calculation is made on the number of hours
required. In combination with a deadline, this means that a certain number of
resources is required for carrying out the planned tests. In practice, it is often the
case that the number of available resources initially does not correspond with the
required amount of resources. The test manager should make this clear and then
discuss it with the client. Possible solutions are the hiring of temporary personnel,
extending the timeline or adjusting the strategy.

Available timeline

In practice, the available timeline is usually provided in the form of a deadline for
the relevant phase.

Availability of resources, such as test environments and test tools

When are these to be available for the activitiese Do the test tools, for example, still
have to be selected, purchased and set up?

Dependencies between the various activities

Activities that depend on other activities can only start after completion of those
other activities and not in parallel with them.

Method of system development

The test levels are planned depending on the way in which the system is
developed. With a waterfall method, the phasing is different from that of an
iterative process in which testing and development activities are parallel and
sometimes executed integrally. The development test and system fest as a rule
have more to do with this than the acceptance test.

Information on milestones in the development project

This information is necessary in order to coordinate the test planning optimally with
the planning of the rest of the project. This makes it possible to minimize the total
timeline of the project.

The planning is reflected in, for example, a network planning or a bar chart, depending on
the method used within the organization. This book does not deal with planning
techniques, because for the test process the test manager employs standard planning
techniques that are not specific to testing.

Example of activities planning

Week number (2006)

TEST PHASE Hours/FTE

14 |...|20 [21 |...[34 |35 |36 |37 |38 |39 |40 |41 |42

Planning, Control and X X X X X X X X X X X X X x |2FmE

Setting up &

204




maintaining
infrastructure

Preparation and X X X X X X X 3480 hours

Specification

Exec. FAT, FIT (functional X [x [x [x 3480 hours

integration test)

Exec. CT (chain test) X |[x [x [x

Exec. UAT X |x [x [x

Completion X

Spare week X

Total: | 2 FTE + 6940
hours

Example of milestone planning

Milestone Date Owner

Delivery of definitive test basis 01-03-2006 SAP project leader
Delivery of test infrastructure 31-08-2006 SAP project leader
Delivery of test object 31-08-2006 SAP project leader
Completion of FAT, FIT, CIT, UAT test 31-08-2006 Test coordinator
specifications

Completion of test execution 14-10-2006 Test coordinator
Delivery of testware 22-10-2006 Test coordinator
Delivery of Preliminary Release advice 15-10-2006 Test manager
Delivery of Release advice 22-10-2006 Test manager
Delivery of Test Report 22-10-2006 Test manager

Tip

When planning resources, indicate from which point it is no longer possible to
accommodate imminent overrun by deploying extra people. Sometimes an environment
is so complex or specific that an ‘extra hand’ will no longer gain time. It is not pleasant fo
have to explain this when the moment has already arrived and the project leader is
already busily engaged in arranging extra people for the test team — even less so when
those exira people are already being infroduced to the team...

An aspect of planning related to quality is when a test level is ready and the test object
can be fransferred to the following test level or to production. In other words, what can
the ‘next’ test level expect after the ‘previous’ test level is completed. In order to make
these expectations explicit, requirements are set according fo the result of the test level. In
practice, these requirements are also known as exit criteria. With increasing outsourcing, it
becomes more and more important to establish clear exit criteria to prevent the supplier
from delivering inadequate quality.

In more detail

205




Exit criteria can relate, for example, to the number of issues in a particular risk category
that may sfill be open, the way in which a certain risk is covered (e.g. all the system parts
with the highest risk category have been tested using a formal test design technique), or
the intensity with in which the requirements should have been tested. From within the
master test plan, the exit criteria are applied fo the test level. If that is not the case, or if
there is no master test plan, the test manager should agree the criteria with the client.

The box below shows a number of concrete examples of exit criteria:

System X may only be transferred to the AT when the following conditions have
been met:

« There are no more open defects in the category of “severe”

« Thereis a maximum of 4 open defects in the category “disrupting”

* The total number of open defects is no more than 20

« A workaround has been described for every open defect

e For every user functionality, at minimum, the correct paths have been

tested and approved

System X may be transferred to the AT when it can be shown in writing that all the
risks that were allocated to the ST in accordance with document Y have been
tested in the agreed test intensity and by the agreed test method.

An important point of focus as regards the above-mentioned criteria is that clear
definifions should be agreed by all the stakeholders of what a particular category of
severity is and what is meant by 'agreed test intensity and test method'. In practice, a lack
of clarity here can lead to heated discussions.

In more detail

Similarities and differences between acceptance and exit criteria

Another term for exit criteria that is used is ‘acceptance criteria’, as discussed in
subsection 6.2.2. Besides the fact that acceptance criteria may be a broader term than
exit criteria, another difference is that acceptance criteria come at the end, i.e. at
acceptance, and exit criteria at the transfer from one test level to another, or to
production. Figure 43 illustrates this.

206



wish, legislation, policy,
opportunity, problem

operation &
management

requirements f\ Ac_ceptance
criteria
\ acceptange
tests
functional
design \
\ 4<£.<

[ ——— Exit

technical :ysttem | criteria
design EES

X L

development
tests

realisation

o

Figure 43. Exit and acceptance criteria

Tip

Suspend and resume criteria

In some, particularly formally set up, tests, so-called suspend- and resume criteria may be
defined in the plan. These criteria indicate under which circumstances the testing is
temporarily suspended and then resumed. Examples of suspend criteria are that testing
has to stop when a particular infrastructural component is not available, orif a test-
blocking defect is found. A resume criterion may be that with the lifting of the suspend
criterion the testing of the system part /function/component has to take place entirely
anew.

Feedback

When the test manager has created a planning, this is the fime to agree matters with the
client. If the test strategy setup and subsequent estimate of required effort and planning
are not acceptable, then these steps are repeated. With this, the client and test manager
consider whether to test certain aspects with lesser test intensity, so that time and/or
money is spared, but a higher level of risk is accepted, or the other way around. To
facilitate communication, the test manager refers here to the original test goals. Where a
master test plan exists, the coordinating test manager is involved here, but the client
makes the final choice.

An adjusted strategy is illustrated below, with less test intensity indicated by O instead of @
and more test intensity by @.

ST example
Characteristic RC ST Subsys1 Subsys2 Total sys
MTP | MTP
Functionality n/a | n/a A/®@@®O B/O® cC/®
functional, functional, integration,
regression regression multi-user
Performance online B i - - C/®

207



random
testing in ST
environment

UAT example

Characteristic RC UAT Subsys1 Subsys2 Total sys
MTP | MTP
Functionality n/a n/a A/@O B/- c/®
functional regression
User-friendliness B e |/ B/@O
usability
Security A o
- authorization matrix | B -/E =/IE B/®®
authorization | authorization | process test
test fest
- application C - - cC/®
penetration
test
Suitability B 000 | z/00 c/e® A/@@O
scenario test | scenario test | process test

The adjusted strategy leads to another estimated effort and planning, and also to an
indication of bigger (or even smaller) product risks, franslated into terms that are
comprehensible to the client (referring back to the product risk analysis with test goals,
characteristics and object parts).

In addifion to the feedback on strategy, budget and planning, the test manager discusses
with the client the use of tolerances in the execution of the test process. These are
boundaries within which the test manager is not required to ask the client’'s permission. For
example, a tolerance of 5% is often agreed for the budget. For the planning, it may be
agreed that only deviations from project milestones will require discussion. With strategy
tolerances, for example, the client’s advance permission is not required for testing a
characteristic/object part with a greater or lesser test intensity.

Products

Planning for the ftest process

Exit criteria

Optional: tolerances for strategy, budget and planning
Optional: suspend and resume criteria

(above products are established in the test plan)

Strategy, budget and planning feedback to/from the client.

Techniques
Not applicable.

208



Tools
Workflow tool.

209



43.2.8 Allocating test units and test techniques

KA
start sHeHsHeH 7 8 12 H 13 H 14 | end

Aim
To finalize the test types and the thorough/light testing of characteristics/object parts
based on the approved test strategy, budget and planning.

Method of operation

The method covers the following subactivities:
1. Determining test units
2. Allocating test fechniques

This step requires information that is not always readily available in practice. In that case,
the test manager will carry out this step in a general manner and bring in the details at a
later stage, during the phase “Control”.

1) Determining the test units

Within the strategy, test types and test intensity are allocated to the characteristics/object
parts. In some cases, a test type may be very extensive for a particular
characteristic/object part. To facilitate the definition of manageable and executable
activities, the test manager splits the object part further into ‘test units’.

Definition

A test unitis a collection of processes, tfransactions and/or functions that are tested
collectively.

The advantage of a test unit is that it forms a manageable unit (X hours in Y period) and as
such, itis an important management mechanism for the test manager. Reasons for
splitting a object part into test units are:
« The size of the object part is too big to be able fo manage the testing of it
effectively
« A particular piece of the object part requires a separate test method of operation
with other test techniques, e.g. because the risk strongly deviates or because the
nature of the part deviates from the rest (screen as against processing).
Since a test unit represents a unit of work, it is advisable for the test manager to coordinate
this with the developer, so that a delivery unit corresponds with one or more test units and
no half-test units are delivered.

2) Allocating test techniques

A subsequent step is that, per test type and based on the chosen test intensity, one or
more suitable test techniques are selected with which the test is o be specified and
executed. If a object partis divided into test units, techniques are allocated per test unit.
But how, then, do you select the suitable techniquese Chapter 3 “Website” covers
approaches, coverage types and fest design fechniques. Variations can be made on

210




these, and there are other techniques, including those you create yourself. Checklists, too,
can be used as a technique. This choice is, besides the chosen test intensity, strongly
dependent on a number of other aspects:

Test basis

Are the tests to be based on requirements; is the functional design written in pseudo-
code or easily converted to it; are there state-fransition diagrams or decision tables, or
is it very informal with a lot of knowledge residing in the heads of the domain experts?
Some techniques rely heavily on the availability of a certain form of described test
basis, while with others the test basis may be an unstructured and poorly documented
collection of information sources.

Test type / quality characteristics

What is to be tested? Some test design tfechniques are mainly suitable for testing the
intferaction (screens, reports, online) between system and user; others are more
suitable for testing the relationship between the administrative organization and the
system, for testing performance or security, or for testing complex processing
(calculations), and yet others are infended for testing the integration between
functions and/or data. Checklists are also often used for testing non-functional quality
characteristics. All of these relate to the type of defects that can be found with the aid
of the technique, e.g. incorrect input checks, incorrect processing or integration errors.
What kind of variations should be covered, and to what degree?

Which test intensity is required? This should be expressed by defining one or more
coverage types.

Knowledge and expertise of the available testers

Have the testers already been trained in the technique, are they experienced in it or
does the choice of a particular fechnique mean that the testers need to be trained
and coached in it2 Is the technique really suitable for the available testers2 Users are
normally not professional testers.

Labor-intensiveness

How labor-intensive are the selected techniques, and is this in proportion to the
estimated amount of time?2 Sometimes other techniques should be chosen, with
possibly different coverage, to remain within budget. If this means less thorough testing
is to be carried out than was agreed, the client should, of course, be informed!

After having covered the above aspects, the test manager makes a selection of
techniques to be used. An example is set out below:

Example
Characteristic | Object part Test type Techniques
Functionality Subsysl Functional test tul: DCoT
(A/O@) tu2: SYN, SEM
Functionality Subsysl Regression test tu3: selection from
(A/O®) tul and tu2
Functionality Subsys2 Functional test tu4: Exploratory
(B/@) Testing
tus: SYN, SEM
Functionality Subsys2 Regression test tué: selection from
(B/@®) tu4 and tus
Functionality Total system Integration tu7: DCyT
(C/®)
Functionality Total system Multi-user tu8: Exploratory
(C/®) Testing

211




Random test in
ST environment

Performance tu?: Error Guessing

online

Total system
(C/®)

In this example, the testing of subsystem 1 is spread across test units (“tu”) 1 and 2;
subsystem 2 consists of test units 4 and 5. Test unit 1, with many complex calculations, is
nevertheless given rather an light technique, with the Data Combination Test (because
the client opted for an average test intensity), test unit 4 contains processing functionality
and is allocated the (very free) “technique” of Exploratory Testing; test units 2 and 5 consist
mainly of screens and are each given 2 techniques: the Syntactic and Semantic Test. The
total system is then tested for coherence with the Data Cycle Test (test unit 7) and the
multi-user aspect with Exploratory Testing (test unit 8). Later regression tests consist of a
selection of previously created test cases (test units 3 and é). Finally, a light Performance

test is carried out using Error Guessing (test unit 9).

UAT example

Characteristic Object part Test type Techniques
Functionality Subsys| Functional test tul: ST random test
(A/@) tu2: ST random test
Functionality Total system Regression tu3: DCoT
(C/e®)

User-friendliness

Subsys1 (C/I)

User-friendliness

implicit in tul and tu2

User-friendliness Total system Usability tu4: SUMI
(B/®)

Security — Subsys1 (-/E) Authorization tus: auth. matrix

auth.matrix fest random fest

Security — Subsys?2 (-/E) Authorization tus: auth. matrix

auth.matrix fest random tfest

Security — Total system Process test tu7: SEM

auth.matrix (B/0®®)

Security — Total system Penefration test | tu8: Error Guessing

application (C/®)

Suitability Subsys1 (B/@®) | Scenario fest tu?: PCT, test depth
level 2

Suitability Subsys2 (C/@) Scenario test tu10: PCT, test depth
level 1

Suitability Total system Process test tull: PCT, test depth

(A/@®)

level 2

In this example, use is made in test units 1 and 2 of ST test cases. The regression test on the
total system takes place with the light Data Combination Test. User-friendliness is implicitly
tested simultaneously with test units 1 and 2 by evaluating the testers’ impressions after
completion. Thereafter, an explicit test takes place with the aid of the SUMI checklist. The
authorization matrix is first randomly checked for correct input, and then the authorizations
are tested explicitly using the Semantic Test. A light penetration test takes place using Error
Guessing, and Suitability is tested using the Process Cycle Test.

If the decision has been made to perform explicit testing, the table below can provide
assistance in selecting the test design techniques to be employed. Per quality
characteristic, the table provides various test design techniques that are suitable for
testing the relevant characteristic. This table can also be found at www.tmap.net.

212



For the relevant quality characteristics, usable test design techniques are mentioned,
making a distinction with respect to the thoroughness of the test. « means light, <« average
and ««+ thorough. The techniques mentioned should be seen as obvious choices and are
intended fo provide inspiration. The table is certainly not meant to be prescriptive — other
choices of techniques are of course allowed.

Quality characteristic Test design technique
o / light *e / average see / thorough
Manageability CKL DCoT DCoT
- installability
Security CKL SEM Penetration test
Usability UCT RLT
UCT PCT*
Continuity RLT RLT
Functionality DCoT DCoT DCoT
- infegration GCT
PCT*
Functionality DCoT DCoT DCoT + boundary values
- detail EVT EVT + boundary values
DTT
Functionality SYN SYN
- validations SEM
User-friendliness SYN SYN Usability test (if necessary inlab)
ucT*
PCT*
Infrastructure (suitability RLT*
for)
Suitability PCT test PCT PCT test depth level-3
depth level-1
ucT*
Performance RLT
Portability CKL Functional regression test All functional tests
Random Important environment All environment combinations
sample combinations
functional
tests
Random
sample
environment
combinations
Efficiency RLT

Notes on the above table:
« Abbreviations used:

If the technique is adapted to some extent, this can be used to test the relevant
quality characteristic

DTT Decision table test

CKL  Checklist

DCoT Data combination test

DCyT Data cycle test

ECT  Elementary comparison test

DCT Data cycle test

213




PCT  Process cycle test (depth level = 2)

RLT Real-life test

SEM  Semantic test

SYN  Syntactic test

UCT  Use case test

For a comprehensive description of these techniques, please refer to section 3.7 “A basic
set of test design techniques”.

« Conceptsused

Environment combinations
In portability testing, it is examined whether the system will run in various
environments. Environments can be made up of various things, such as hardware
platform, database system, network, browser and operating system. If the system is
required to run on 3 (versions of) operating systems, under 4 browsers (or browser
versions), this runs to 3 x 4 = 12 environment combinations to be tested.

Penetration test
The penetration test is aimed at finding holes in the security of the system. This test is
usually carried out by an ‘ethical hacker’.

Portability — functional tests
In order to test portability, testing random samples of the functional tests —in
increasing test intensity — can be carried out in a particular environment, the
regression test or all the fest cases.

Usability test
A test in which the users can simulate business processes and try out the system. By
observing the users during the test, conclusions can be drawn concerning the quality
of the test object. A specially arranged and controlled environment that includes
video cameras and a room with two-way mirror for the observers is known as a
usability lab.

In more detail

Test design techniques are actually first linked to test types and then to quality
characteristics. In the absence of an unambiguous set of test types, a direct link to quality
characteristics is selected.

The techniques of Exploratory Testing and Error Guessing do not appear in the above
table. The reason for this is that these techniques can be used for all quality characteristics.
Exploratory Testing is any form of testing with the tester making his test design during the
execution of the test. The information obtained in the course of testing is used to design
new and improved test cases. Error Guessing means that testers test the system in an
unstructured way.

Since it is impossible to establish all possible test situations in test cases, Exploratory Testing
and Error Guessing are valuable techniques for carrying out supplementary testing. It is
advisable to allow a limited amount of time during each test period for these tfechniques.

If a cellis left empty and no obvious techniques have been cited, then Error Guessing or

Exploratory Testing can be applied. If relevant techniques have been cited, such as with

Functionality validations with in-depth coverage, then aforesaid techniques can be used
as a basis. These techniques can often be executed with a deeper-level variant, or more
than just one technique can be selected.

In more detail

214



Much uncertainty
In some cases, there is much uncertainty as to where the risks lie. This makes it difficult to
determine a good strategy and to choose the right techniques. There are two possible
solutions to this:
« Exploratory testing, because this has the flexibility to zoom in as necessary during
the test execution on where the risk areas appear to be
+ Employing the “onion” model. With this, somewhat general tests are specified in
advance, but fime and budget are planned for creating additional and targeted
deeper-level tests during the test execution as the areas of risk become clearer.
The festing thus progresses to a deeper layer each fime.

Products
Overview of test units with allocation of test techniques.

Techniques
Not applicable.

Tools
Workflow tool.

215



4.3.2.9 Defining the test products

KX
start sHeHsHeH 7 8 12 H 13 H 14 | end

Aim
The clear definition of the test products to be delivered.

Method of operation

The activities that are carried out for the purposes of planning, execution and managing
the test process deliver certain products, such as the test plan and reports, test cases and
test scripts, but also procedures, instructions and project documentation, such as
consultation notes. In consultation with the client and other stakeholders, it is determined
what products are to be delivered. If there is a master test plan, this will also define test
products to be delivered. This may concern testware, such as test plans, test scripts or
automated regression tests — products, therefore, that are eligible for reuse, but which also
may define test documentation, such as progress reports.

Tip
The use of tools for configuration or test management helps to produce a uniform method.

The following test products can be distinguished:
o Testware

Definition

Testware is all the test documentation produced in the course of the test process that can
be used for maintenance purposes and that should therefore be transferable and
maintainable.

In retests or regression testing, existing testware is often used. Testware covers, for
example:
o Testplan(s)
Includes both master test plans and other test plans.
o Logical test specifications
The logical specifications contain the logical description of the test cases.
o Physical test specifications
The physical test specifications contain the physical description of the tfest
cases and the test scripts. Physical means that the test cases are executable
and checkable. The physical test cases are converted from the logical fest
cases. A test script contains the physical test cases placed in the most efficient
order of execution.
o Traceability matrix (or cross-reference maitrix)
A matrix in which the link is indicated between the test basis (requirements,
functional specifications, etc.) and the actual test cases. The situations to be
tested from the test basis are shown vertically and the test cases horizontally.
o Testinput files
The test input files created on the basis of the fest scripts should contain a

216




(brief) description of the following:
= Aim
=  The “physical” name
= Date created
= Brief description of the content
= The file type and other relevant features
= Reference to the test scripfs.
Basic documentation
A description of the test environment, test tfools, test organization and
underlying databases.
Test execution dossier
The test execution dossier consists of:
= Testresults (logging of executed tests and test cases) and reports
= Test execution (optional)
The "material evidence” of the executed tests can consist of screen
dumps, print output and output files. After completion of the test, the
tester delivers the produced output to the administrator. The test
documentation to be delivered from the output contains:
- Reference to the “physical” name
- Date of creation
- Brief description of the content
- File type and other relevant features
- Reference to the test script.
= Information on the defects and the changes
= Transfer and version documentation.

« Ofther test (project) documentation
During the test process, various documents are received or created that are not
meant for reuse, such as:

o

O 0O Oo0OO0OO0oOo0oOo

Project plans

Reports of the discussions (with lists of decisions and activities)
Correspondence, both on paper and electronic (e-mail)
Memos

(Project) standards and guidelines

Test, review and audit reports

Reports on progress and quality

Efc.

By means of a brief description, the content and the aim of the various products or
documents are indicated. Besides listing the products to be delivered, norms and
standards can also be supplied and reference made to templates.

Products

A description of the test products to be delivered including norms and standards and any
reference to templates, established in the test plan.

Techniques
Not applicable.

Tools

Testware management tool.

217



4.3.2.10 Defining the organization

KX
start sHaHsHeH 7 8 12 H 13 H 14 | end

Aim
To define the roles, tasks, authorizations and responsibilities that are applicable to the test
level.

Method of operation

The method covers the following subactivities:

Determining necessary roles

Delegating tasks, authorizations and responsibilities
Establishing the organization

Allocating personnel

Establishing training and coaching needs

Establishing communication structures and reporting lines.

A e i

1) Determining necessary roles

In order to facilitate the activities in the test process, the test manager determines which

test roles are required and how they are to be filled. These will include, for example:

+ Test management or test coordination

+ Testteam leading

o Tester

Management (test process, test products, defects)

* Intermediary

« Support (domain knowledge, system knowledge, test environment, test tools or test
method).

Make as much use here as possible of the roles set out at coordinating level.

2) Delegating tasks, authorizations and responsibilities
The tasks and responsibilities are set out here per required role.

Examples of tasks (with the most likely role shown in parenthesis):

» Creating and maintaining the test plan (test manager )

» Directing the execution of, monitoring and adjusting the test activities (test
manager )

» Carrying out a testability review on the test basis (tester)

» Designing tests based on user information (tester)

» Specifying test cases and test scripts (tester)

» Executing tests (tester)

+ Organizing automated test execution (test-tool specidalist, fest-tool programmer)

» Organizing the technical infrastructure and the management of this (test
infrastructure coordinator)

» Organizing methodical, technical and functional support (test manager )

* Reporting on the test progress and quality of the test object (test manager )

218



» Supporting users in creating test cases (specifically for iterative development)
(tester)

3) Establishing the organization

The correlations between the roles mentioned and the relationships with the other
stakeholders within the system development process have to be determined and
established. The organization of the test level naturally forms part of a bigger whole. If the
whole is a project, the test manager should also establish a relationship with the test or
quality department, if any.

For the organization of a test level, the possibilities can largely be defined as follows (see
figure 44):

1. Testing as an independent activity or integrated with other activities

2. Testing placed within a project or in a line organization

These choices are dependent on the test level, project and organization. Sometimes, but
by no means always, the test manager can exert influence on this.

independent |integrated
activity
project acceptance test, | development tests,
organisation | traditional system test in
system test agile environment
line testing factory | maintenance
organisation process

Figure 44. Organizational divisions with examples

Below are the most significant organizational forms with a few examples briefly mentioned.
The descriptions and advantages are emphatically meant as a general indication; there
are often exceptions in practice.

In more detail

Testing as an independent activity in a project
Within the project, a team is responsible for organizing and executing the test. The testers
within the feam as a rule have a lot of test knowledge, together with — depending on the
test level — a mix of system and organizational knowledge.
Advantages:

» Good accessibility to knowledge of the system

« Good coordination among users, developers and testers

+ Knowledge and skills of testers are easily discernible

» Focus on an aim, therefore more manageable

* Independent assessment of the quality of the test object.

Testing integrated within a project

Within the project, testers, users and developers work in the same team. There are often
several feams in action. The tester is responsible within his team for the organization and

219



execution of the test. The tester, as arule, has a lot of technical knowledge of the system
and architecture.
Advantages:

« Excellent knowledge of the application and architecture

e Close co-operatfion among users, developers and testers

e Very short lines of communication

* Focus on an aim, therefore more manageable

Testing as an independent line organization
A separate department or organization has testing — both the organization and execution
— as its primary task. Projects or other line departments issue a certain test instruction fo this
department/organization. Test knowledge is dominant.
Advantages:

* Knowledge and skills of testers are easily discernible

* Independent assessment of the quality of the test object

» Efficiency gain through reuse and test automation

« Permanently set up infrastructure facilitates a fast start

- Standard test process setup facilitates a fast start

* Increased motivation through career prospects of testers

Testing integrated in the line organization
Within a development or system management department, the role of tester is often
combined with other roles. The tester in this organizational form often has a lot of system
and/or organizational knowledge.
Advantages:

» Excellent knowledge of the system and the organization

» Close co-operatfion among users, developers and testers

* Short lines of communication

+ Knowledge management concerning an application is easier to realize

Below, some examples of organizational forms are set out.

220



Example

Client

SYS Project manager

Project leader SYS
Infrastructure

Project leader
Packaging
Applications

Test manager
Acceptance
testing

Line: methodical
support

Intermediary

Test co-ordinator(s)

Methodical
support

| Testers

Figure 45: Example traditional organization

The above is a rather traditional organization where the acceptance test manager falls
under the project manager and the system test under the project leader (Packaging
Applications). Test support is supplied from within the line.

Example

In the example below, the test manager comes under both the project manager of the
SAP system and the project manager who has to implement it in the department. While
answering to two clients may be an undesirable situation, in this practical example it has
gone well. The test manager has stipulated at the beginning that if the two clients
disagree, they should resolve their differences without involving the test manager. There

has been no incidence of this.

221




Project manager Project manager
SAP HR/PF HRM line department

Test administrator

Project leaders of construction teams Test manager
acceptance test

Test team leaders

Test teams (1 or
more)

Figure 46: Example organization with two managers

Tip

Iterative and agile system development

A disadvantage of integrated testing cited is that it can impair the independent quality
assessment of the tester. A possible solution to this is to place the test manager apart from
the development teams, with the testers in these teams answering fo him (see figure 47).
The advantage is that the gaps in the teams between developer, user and tester remain
as small as possible, while the test manager can be alerted if the festing within a team runs
into difficulties through planning pressure or other circumstances. This requires insight info
the total product and project on the part of the test manager, combined with a good
political feel for the balance between ‘quality’ and ‘meeting deadlines’.

Project
manager
—
Test
manager

Development Development
team 2 team 3

. developers . developers developers
“_ users e S
| oS eeters T ~testers

Figure 47. Example test management apart from teams

In more detail

RACI
If necessary, a RACI table could be set up, showing activities and stakeholders set out
against each other. RACI stands for Responsible, Accountable, Consulted and Informed.

222



At every crossroads, it can be indicated whether a party is directly responsible (R), is
accountable (A), should be consulted (C), informed (), or not at alll.

It is impossible to determine one preferred organization for testing. In general, the structure
of the test organization should resemble that of the associated process of system
development or package implementation. In many cases, this means the project
organization. If there is to be frequent (re)testing in combination with scarce (test)
knowledge, the permanent test organization discussed in section 8.3 becomes a
candidate.

4) Allocating personnel

When it has been established which test roles should be filled within the test process, the
test manager delegates people to the roles. In this, of course, he makes allowance for
their availability and skills in relation to the knowledge and skills required in the relevant
roles (see section 8.6 "Test professional” and Chapter 16 “Test roles”). For the sake of
clarity: the roles do not have fo be filled by test professionals; end users or developers, for
example, may be assigned the role of tester. The important thing is that the team as a
whole has the right mix of knowledge and skills in the area of system, organization and
testing. By the way, one individual can take several roles, but it must then be ensured that
this does not result in conflicting responsibilities.

Tips

« To have more certainty that the testers have sufficient test knowledge, one can ask for
certified testers. EXIN (Examination Institute for Information Science) organizes a
certification scheme specifically for TMap. The ISTQB (International Software Testing
Qualifications Board) is responsible for an infernational qualification scheme for testers.

«  When people are deployed from other departments, or even other organizations, the
test manager should make allowance for agreements, procedures, selection
processes, etc. This can take up a lot of time.

e There is often external pressure to accept certain people as testers into the feam. If
these people are not suitable, the test manager should be firm and spell out the
consequences in terms of high fraining and coaching costs and low productivity.

*  Employing or hiring in a tester cannot simply be left to a personnel or purchasing
department. Good information on this can be found in [Rothman, 2006].

Besides the suitability of the individual for the role(s), there is a further dimension: that of the
team. The natural inclinatfion of the test manager is to select those persons whose
personality most appeals to him. This can result in a team of similar characters. The theory
of team formation teaches that, in fact, it is the team with a mix of personalities that
achieves the best results. Possibly the best-known model in this area is the 9 team roles of
Belbin (see also www.belbin.com). This differentiates between functional, organizational
and personal roles. The ideal composition of each team depends on the aims.

Belbin distinguishes the following roles, with a number of characteristics per role:

Plant Creative, individudlistic, imaginative, intellectual,
knowledgeable

Chairperson Calm, self-confident, sober, purposeful, brings out the best in
every team member

Monitor/evaluator Has strategic insight, is sober, unemotional, analytical and
crifical

Implementer Conscientious, conservative, converts decisions into tasks,
practical, self-disciplined

223




Finisher Painstaking, concerned, works behind the scenes

Resource Investigator Extrovert, seeks out new possibilities, enthusiastic,
communicative

Shaper Dynamic, energetic, extrovert, impatient
Team worker Sociable, co-operative, listens well, encourages and integrates
Specialist Professional, solo player, dedicated

For broader theory on this, refer to [Belbin, 2003]. A translation into the best test-team
composition is provided [Lloyd Roden, 2005].

5) Establishing training and coaching needs

The people involved in the test levels should have various types of knowledge, particularly
in the areas of testing, domain knowledge and system.
» Fortesting, this may include: (the advantages of) the test method of operation,
strategy determination, test techniques and tools to be applied
* For domain knowledge, bear in mind, for example, the organization and its
business processes
« System knowledge may consist of knowledge of the development or
implementation process, design techniques, technical architecture, database or
programming tools, etc.

In more detail

Knowledge input

The intention is not to include only very experienced testers with extensive knowledge in all
3 areas. Depending on the test level and the composition of the team, each individual will
require to have a certain mix of these types of knowledge. If their knowledge is insufficient
in one of the areas, it will have to be brought up to the required level. Training is the most
obvious answer here, and a budget should be reserved for it. Timing is important: fraining is
most effective if the knowledge gained can be quickly put into practice afterwards.
Following any training given, people with insufficient knowledge should be coached in the
beginning by someone with experience. This accelerates the learning process
considerably. It often takes place “on-the-fly” during the test process, but if it is estimated
to be a substantial activity, it should be planned for and hours made available for it.

6) Establishing communication structures and reporting lines

From within the test process, communication takes place with various parties. Examples of
the parties with whom the test manager communicates are:

e Client

« Test manager of the overall test process

* Project management (including Change Control Board)

« Acceptors (user organization, system administration, functional management)

« Steering group

* Projectleaders (design, construction and/or implementation)

« Developers

» Testing line organization

e Quality management, QA

« Accountancy, EDP auditing.

It should be agreed with each party whether consultation and/or reporting is fo tfake
place, and what the aims and frequency of these should be.

224




Meeting types

For every type of meeting, it should be agreed who will be present and what, if any, the
standard agenda will be.

Examples of meeting types for use by the test manager are:
Weekly meeting with all the other test managers, lead by the test manager of the
overall test process

Weekly project meeting

Weekly Change Confrol Board meeting
Defects meeting (1 x per week as standard; 3 x per week during test execution)
Weekly test team meeting
Daily stand-up meeting.

Example of a fixed agenda for a test team meeting:

Agenda  Subject Time Who
item
1. Opening XX.XX = XX.XX <test manager>
- Establish the agenda
- Announcements
2. Minutes of meeting dated: <xx-xx-xxxx> XX.XX = XX.XX All
3. Action list dated: <xx-xx-xxxx> XX.XX = XX.XX All
4. Status, progress and quality: XX.XX = XX.XX
- testunit1 <Tester 1>
- test unit 2 <Tester 2>
- testunit3 <Tester 1>
5. Quality of test process XX.XX — XX.XX All
- <Whatis going well and what could be
improved?2>
- <TPI status>
- <Defects management>
- <Testware management>
- <Reviews>
6. Questions before closure XX.XX = XX.XX All
Reports
According to the BDTM vision, reporting takes place on the four aspects Result, Risks, Time
and Costs.
* Result
o The outcome of the tests executed at the level of characteristic/object part
o The resultin terms of obtained/not-obtained test goals (business processes, user
requirements, etc.)
o0 Any trend analyses
e Risk

225




o Notfification of parts that are being tested more superficially (or not at all) than
the risk estimate indicates, thus presenting a higher risk
o Observed (test) project risks
+ Time + Costs
o Progress of testing (in activities, products, hours spent and, optionally, money,
daftes)
o Indication of when the testing will be completed.

Reporting on risks and results takes place at the level of test goals, as agreed with the
client and other stakeholders. The risk tables of the product risk analysis are maintained
with this aim. It is up to the test manager to translate test results on characteristics/object
parts effectively, and on the basis of the tables, to this level.

Reporting can take place in various ways, to various target groups and at various times.
The most important forms of reporting are:

e Progress and quality reports
Information and advice on progress (and, optionally, quality) of the test process
and on quality/risks of the test object, based on the four BDTM aspects.
Frequency: periodically, preferably weekly

* Risk report
With certain (project) risks, the test manager can, either upon request or at his own
initiative, report on risk, the consequences for the test process and possible
measures for dealing with the risk. In the Prince2 project management method
these are known as ‘exception reports’.
Frequency: ad hoc

* Release advice
Information and advice on quality/risks of the fest object + formally established
release advice.
Frequency: towards the end of the test execution, before the decision has to be
taken on release

e Finalreport
Evaluation of the test process and test object, looking back from the original plan.
Frequency: once, at the end of the test process.

The test manager will determine, for each of these forms of report, to whom they should
be sent, whether for approval or for information, with what content and degree of detail
and with what frequency. In the activity, “Understanding the assignment” the fest
manager has already looked at which parties should, or wish to, receive reports. In
consultation with the client, that is now determined in more detail. As an aid in overseeing
who should receive which report, a matrix can be set up of report forms and target
groups.

In more detail

In terms of content, the progress and quality report is of the most importance, since it
provides information and recommendations, on the basis of which fimely management
adjustments can be made. The data for this are supplied through management setup. The
report should contain details on the most recent reporting period and cumulative data on
the entire test process.

226



Products
A description of the test organization, established in the test plan.

Techniques
Not applicable.

Tools
Not applicable.

4.3.2.11 Defining the infrastructure

KX
starl s HaH s HeH 7 8 12 H 13 H 14 | end
Aim

To establish the infrastructure that is required for the test process.

Method of operation

The method of operation covers the following subactivities:
1. Defining the test environment

2. Defining the test tools

3. Defining the office setup

4. Establishing infrastructure planning

1) Defining the test environment

Each test level requires a test environment in order to execute the tests. This environment is
generally composed of the following components:

 Hardware

« Software

« Inferfaces

* Environment data

* System management tools

e Processes.

The environment should be composed and set up in such a way as to facilitate, on the
basis of the test results obtained, the best estimate of the degree to which the test object
meets the set requirements. The environment has a considerable influence on the quality,
duration and costs of the test process.

In order to manage the test environment effectively, it is often separate from the
development or production environment. Moreover, each test level sefts its environment
different requirements.

At www.tmap.net, a checklist “Test environments” is available that can be of assistance in
defining the test environment.

If the test environment already exists, for example in a maintenance process, it may be
sufficient to refer to this and to mention any adjustments to be made.

2) Defining the test tools

227



It is established which test tools are required. Test tools can provide support with most test
activities.

Besides the familiar test tools, such as test management, record&playback and defect
management tools, you should also think of small, freeware or even self-built tools. Such
tools can often be implemented for a small investment in time, but can be extremely
valuable. The Internet is invaluable for seeking out freeware tools (search, for example, for
“freeware test tool”). For self-built tools, it is advisable to consult the developers; they often
already have such tools, otherwise they may be able to make them with very little effort.

In more detail

Since tools are to support the test process, the logical sequence would appear to be to
define the process first and then select the tool: “structure before tool”. However, this is not
entirely tfrue. Some very useful tools (test management and record&playback in particular)
sef requirements as regards process, e€.g. the way in which test cases are established. If the
test manager makes no allowance for this, the tool cannot be (efficiently) employed. It is
therefore preferable to carry out process setup and tool selection more or less
simultaneously.

3) Defining the office setup

The office infrastructure required for testing (workrooms, meeting rooms, telephones, PCs,
network connections, office software, printers, etc.) is defined in outline. This concerns an
office setup in the widest sense, since testers, too, need to carry out their work in the right
circumstances. A checklist for the office setup can be found at www.tmap.net.

The appropriate and timely setting up of the office infrastructure will mean that all kinds of
efficiency losses, such as relocations, waiting fimes and unproductive hours can be kept to
a minimum. A bad example in this connection is if the testers have to be physically too far
removed from each other and the rest of the project. An adequate setup of the
workplaces also has a positive influence on the quality of the test process. This concerns,
for example, the quality of both the internal and external communication and the
motivation and productivity of the people involved.

Tips

» Find out at as early a stage as possible what the waiting times are in respect of the
various requirements

e Ensure that any relocations, etc., are separately budgeted

» |If testers are physically far removed from each other, extra hours for overheads
may possibly be budgeted. This will make the disadvantages of the chosen office
infrastructure clearer.

4) Establishing infrastructure planning

The test manager documents the agreements made and creates a general plan
containing the timings of the availability of the various facilities. The further ordering and
arranging of the infrastructure comes under the responsibility of the test infrastructure
coordinator.

228



Products

The description of the necessary infrastructure, including a planning, established in the test
plan.

Techniques

Checklist “Test environments” (www.tmap.net)
Checklist “Office setup” (www.tmap.net).

Tools
Not applicable.

4.3.2.12 Organizing the management

K
start 3 H 4 5 H ¢ H 7 8 12 H s H 14 end
Aim

To establish the way in which the management of the test process, infrastructure, test
products and defects is organized.

Method of operation

The method of operation covers the following subactivities:
1. Defining test process management

2. Defining infrastructure management

3. Defining test product management

4. Defining defects management.

At test plan level, norms and standards can be set up for this, supported by procedures,
templates and tools (test management tools, plans and progress monitoring tools).
Sometimes at the overall level facilities are arranged to be used.

1) Defining test process management

Test process management is aimed at administering the test process in terms of progress
and quality, and providing insight into the quality of the test object. To this end,
identification, registration, administration, storage and interpretation of the following
details has to take place:

« Progress and the expenditure of budget and fime

*  Quality indicators

« Test statistics
This management is sometimes assigned to a dedicated role: test project administrator.

This information forms the basis for managing and reporting by test management. Since
control over the test process is increasing in importance, management is under pressure
regarding the test process. Fast — preferably real-time - insight is required into the actuall
status quo. In this connection, the term dashboard is used: a simple overview from which
all the superfluous information is removed and that provides the most important

229



information at a glance: the quality of the test object (in terms of defects) and the
progress of the test process. Planning and progress monitoring tools but also testware
management tools can be an excellent support here.

Below is an example:

|Regression Subsysi Subsys2 Subsys3
User Stories (test basis)
Total n.a. 103 23 n.a.
Status 1 (inferred) [n.a. 62 23 n.a.
Status >= 2 (part  [n.a. 41 0 n.q.
of testing)

Manual test scripts

Total planned 291 145 35 1
Ready 291 62 0 93
To be amended |0 63 14 18
To be made 0 20 21 0
Results of last manual test round

Date n.a. n.a. n.a. n.a.
Total run n.a. n.a. n.a. n.a.
OK n.a. n.a. n.a. n.a.
Not OK n.a. n.a. n.a. n.a.
Not run n.a. n.a. n.a. n.a.
Not completed n.a. n.a. n.a. n.a.

Automated test scripts

Total planned 240 n.a. n.a. 1
Ready 180 n.a. n.q. 1
To be amended |180 n.a. n.a. 0
To be made 60 n.a. n.a. 110

Results last automated test round

Date 18-12-05 n.a. n.a. 17-12-05
Total run 111 n.a. n.a. 1
OK 43 n.a. n.a. 1
Not OK 66 n.a. n.a. 0
Not run 2 n.a. n.a. 0
Not completed [0 n.a. n.a. 0
Defects

New 9 13 n.a. 0
Open 197 1 n.a. 22
Being solved 20 5 n.a. 0
To be retested 14 0 n.a. 1
Closed 274 5 n.a. 143

(n.a. = not applicable)

230



Progress and expenditure of budget and time

The progress information offers the client and the test management insight into the test
process. On the basis of this, the test process can be redirected, if necessary. Where there
are negative tfrends, timely measures can be adopted.

The parts to be managed are the activities and/or products, related to hours, resources,
timeline and with mutual dependencies.

In more detail

Most activities result in one or more products, such as (master) test plan, reports, test
scripts, test files, test logs, etc. Exceptions are supporting activities, which usually do not
deliver any tangible products. A choice has fo be made as to whether to register the
progress at the level of activities or at the level of products, with the further possibility of the
mix form. The advantage of managing at the level of products is that these are easier to
measure than activities: it is easier to judge whether a product is 80% ready than an
activity, and more and more development and project management methods manage
on the basis of products. With the identification of

activities or products, attention must be paid to the required degree of deftail. Is it
important to register an activity of several hours separately, or is it more efficient to register
this as a part of a bigger activity?2 This is determined in consultation with the client.

Quality indicators

The aim of testing is to provide information and advice on the risks and quality of the
object to be tested. To be able to provide this information, quality indicators are
registered. The best-known and most obvious indicator is the defect. By establishing all
kinds of details on a defect, such as e.g. status, severity, cause, quality characteristic and
system part, all kinds of qualitative information can be gleaned from the defects at a later
stage. Bear in mind the number of open defects relating to a partficular part of the system,
the number of defects found in a particular period, the number of defects relating to the
requirements, etc. For more information on defects, refer to section 4.7 "Defects
management”. Various other indicators are also possible. For example, the number of
retests or the number of breakdowns within the test infrastructure (as an indicator of ifs
reliability).

The above-mentioned indicators tell us something about the quality of the test object.
Another group of indicators tells us something about the quality of the test process itself:

Effectiveness of testing Are the (important) defects being found?

Efficiency of testing Are the defects being found as quickly and cheaply as
possible?

Checkability of testing Is the test process progressing fransparently and in the
agreed way?

Test statistics

The test manager builds statistics based on the above information. Statistics can supply
insight info the progress of the test process and quality of the test object, including any
trends. And statistics can also apply to the quality of the test process itself.

231




Tip

» The establishment of which data are measurable (meftrics) is extensively described
in section 4.11 “Metrics”.

* Where a Testing line organization exists, it is advisable to confer with it on the
statistics fo be maintained. The line organization can possibly supply information as
regards which statistics are important within the organization, and can possibly
offer support. Correspondingly, the line organization is likely to be interested in the
statistics from within the project.

2) Defining infrastructure management

The test infrastructure is subdivided intfo three groups of facilities:

e Test environment

* Test tools

« Office setup.

The test infrastructure is specified and ordered during the early stages of the test process.
After installation, infake and acceptance of it, the infrastructure has to be managed. In
practice, the management is usually transferred to a department, such as system
management or operations, whether or not the test infrastructure coordinator forms the
communication channel between the test process and the managing department.

In more detail

With regards to how to assign these management tasks, the various aspects of the test
infrastructure can be divided info two groups:
¢ Technical management
- test environment (hardware and software; management procedures)
- testfiles (physical)
- networks for test environment and office setup
- technical office setup
- test tools
The most important tasks are:
e Version management
* Configuration management
e Solving problem areas
* Making logging available
e Backup & restore
¢ Recovery
e (Technical) monitoring
* Issuing authorizations
*  Providing availability
* Implementing changes
¢ Maintenance
e Deadling with breakdowns.
The technical management tasks that have to be carried out belong to the role of fest
infrastructure coordinator. With the execution of these tasks, support is given as
required by the supplier or a department, such as system management or
infrastructure services.

* Logistical management

- the non-technical part of the office setup, such as canteen provisions, transport,
entry passes, etc.

232



The tasks in the context of logistical management are not test-specific and as such are not
discussed further in this workbook.

3) Defining test product management

At test-plan level, norms and standards are set up for the management of the test
products, supported by procedures, templates and tools. This promotes the reusability of
the products and communication on it. It is advisable to adopt the norms and standards
generally applied within the system development process to documentation and
configuration management. Test product management is sometimes assigned to a
dedicated role: testware administrator.

The following are the various product groups to be managed:

e Products such as testware and test-project documents. Generally, higher
requirements are set in respect of the management of reusable products like
testware, e.g. that versions are retained.

e External products, such as the test basis and the test object. Responsibility for the
management of this lies outside of the test process. However, the importance of
good (version) management is extremely important to the test process. For that
reason, requirements are often set from within the test plan in respect of the
external management - e.g. that each product should be uniquely identifiable.

A choice has to be made as to which products are to be managed and to what degree.
The management can be effectively supported by means of testware management tools.

In more detail

Below is a kick-start to a test-product management procedure. The procedure consists of
four steps:

Delivery

The products to be managed are delivered by the testers to the manager. Preferably, the

delivered files are placed in a separate directory. The products should be delivered

complete (among other things, supplied with a version date and version number). The

manager checks for completeness. The following are some of the items that could be

checked:

e Name of author

* Type of document (also in document name)

* The definitive version number and version datfe

* Accuracy of references to other documentation (the test products should refer clearly
to the associated test object and fest basis)

e Mutations overview: overview of the versions, version dates and reason for change,
including the name of the person who made the change

e Products in electronic form should be delivered with a fixed nomenclature, in a form
that includes the version number.

Registration

The manager registers the delivered products in his administration on the basis of supplier’s
name, name of product, date and version number. At the same fime, it is registered how
long the relevant products should be kept. In certain cases, it may also be necessary to
include the information on products related to the product to be registered. We find this in
organizations where traceability is an important issue, for example because of legal
obligations. With the registration of changed products, the manager should ensure that
the consistency between the various products is preserved.

233



Archiving
A distinction is made between new and changed products. Stated roughly, new products
are added to the archive and changed products replace the previous version.

Consultation

The issue of products to project team members or third parties takes place by means of a
copy of the requested products. The manager registers which version of the products has
been issued to whom and when.

In more detail

Traceability
Partly because of legislation (IFRS, SOX, FDA (Food and Drug Administration) and FAA
(Federal Aviation Administration)), it is becoming increasingly important to demonstrate
both that testing is being carried out and also what exactly is being fested. Showing what
is being tested is achieved through traceability (demonstrating which test cases bear a
relation to which part of the test basis). The proof that testing is actually being performed
has to be supplied through explicit reporting. A subsequent requirement is to provide proof
that the defects have been dealt with. If these stringent requirements concerning
traceability and submission of proof are to be met, then the test product management,
defects management and quality assurance in respect of testing should be tailored to this
end (and extra budget made available foritl). The test management should be set up in
such a way that the traceability and evidence can be followed step by step. This means
that:
+ Itis clearly indicated in the test specifications from which part of the test basis these
are derived
« With the test execution, the evidence to be submitted relates to which test cases
have actually been executed
« Itis made apparent which test cases have led to which defects
« The evidence to be submitted is established during the retest; which defects have
been solved and approved in a retfest.

Apart from this, tfraceability has the following big advantages for testing:

* Much insight is gained into the quality and intensity of the test, because from the
requirements, the functional and the technical design and the software, it is known
with which test cases these have been checked (or will be). The chances of
omissions in the test are therefore much reduced

e With changes in the fest basis or the test object, it can be quickly deduced which
test cases need to be amended and/or carried out anew

« If, owing to pressures of time, it is not possible to carry out all the planned tests, test
cases will have to be scrapped. Because the relationship with requirements,
specifications and software is known, we can scrap those test cases of which the
associated requirement or specification presents the least risk in production and it is
clear with which requirements or specifications no, or no well-founded, decision is
possible on the quality.

If the test needs to provide traceability, then the deployment of tools for test product
management is more or less indispensable.

4) Defining defect management

A defects procedure should be set up to facilitate the handling and managing of defects.
Ideally, this procedure is supported by a tool. Since a defects procedure applies fo the
entire project and not to a separate test level, this procedure can best be defined at
master test plan level. This also makes it possible to detect overall trends, over and above

234



test levels. A description of the defects procedure is included in section 4.7 “Defects
management”. This management is sometimes assigned to a dedicated role: defects
administrator.

Products
A description of the various management processes, established in the test plan.

Techniques
Not applicable.

Tools

Defect management tool

Testware management tool

Planning and progress monitoring ool
Workflow tool

235



43.2.13 Determining test process risks (& countermeasures)

9 |
s s He H 7 8I12H13H]4Hend]
)

To cite explicitly the risks for the test level. This will provide the client and other stakeholders
with a better understanding of the risks for the test, and they can allow for these in
directing the total process.

Aim

Method of operation

In performing the preceding activities, the test manager has obtained a picture of the
possibilities (and/or impossibilities) in connection with the test process, but also of threats
and risks. In the test plan, an indication is provided per risk whether measures have been
taken - and if so, which ones — to cover or reduce the risk found. Bear in mind here
preventive measures for avoiding risks, but perhaps also measures to enable fimely
detection of problems. These risks are then monitored during the management of the test
process.

It should be realized that this step is no more than paying mind to the risks as they are
known at the beginning of the phase. Thereafter, the test manager includes these risks in
the progress report under the separate section “Project risks”. Subsequently, these risks are
tracked, monifored, removed, new risks found, etfc. If this activity takes place at project
level, it can be combined with it.

In more detail

The risks can relate to, among other things:

e Planning realism
The test plan depends on the plans of the various other parties. How realistic are
these plans?e

» Entry quality
The two most important forms of input for the test process are the test basis and the
test object. If this input is of insufficient quality, this will be very disruptive to the test
process.

e Resources
Testing requires people and means, in a certain quantity and of a certain quality. In
practice, it often appears at the execution stage that the resources agreed in the
plan cannot be (entirely) delivered in time.

« Stability
To what extent will the test basis change during the test process2 The more
changes, the greater the consequences for the test process in terms of rework.

* Infrastructure
Is it stable enough for the test; does the environment have to be shared with other
parties; is the environment sufficiently representative; is enough support available?
In many test projects, the infrastructure forms the most unmanageable risk.

236



Products
A description of the found (test) project risks and possible measures, established in the test
plan.

Techniques
Checklist “Test process risks” (www.tmap.net).

Tools
Not applicable.

237



43.2.14 Feedback and consolidation of the plan

BN [ 7 |
U sHaHsHeH 8I12H13H14Hend]
)

Aim
To document the results of all the activities performed to date and obtain the client’s
approval of the chosen approach.

Method of operation

The method of operation covers the following subactivities:
1. Creating the test plan

2. Feedback on the test plan

3. Consolidating the test plan

1) Creating the test plan

The results of all the activities carried out so far are documented in the test plan. The test
plan may for instance contain the following (commonly used) sections:

» Formulation of the assignment

e Teststrategy

« Substantiation of the test strategy (test units, with the test varieties and techniques

(approaches, coverage types, test design techniques) to be used per test unit)

« Organization

* Infrastructure

«  Management

« Threats, (project) risks and measures

* Budget and planning

« Appendix: Product risk analysis

2) Feedback on the test plan

The various parts of the plan should be consistent. In practice, setting up a consistent plan
takes place in several stages. The test plan with the results of preceding activities is fed
back to the client and other stakeholders (such as the test manager of the overall test
process) for approval or adjustment. This makes the test method of operation to be
followed transparent and manageable, entirely in line with BDTM.

Tip

Some test managers have good experiences with going over the plan in a walkthrough
session with the most important stakeholders. Any conflicts soon come to the fore, so that
the number of feedback cycles can be kept to a minimum.

By adjusting the strategy (whereby the risk analysis is in principle unchanged), the test
manager can enable the client to manage on the basis of the test effort weighed against
the test intensity. This results in a suitably adjusted strategy, with the scrapping or adding of
test intensity being shown by O or @ respectively, instead of @. The test manager should
make the consequences of this adjustment for the budget, planning and risks clear, and
translate them into terms that the client will understand (referring back to the test goals).

238



This is repeated until the client is saftisfied with the balance between test intensity and test
effort.

Tip

A potential pitfall is that the communication on the adjusted strategy may be too “strong”.
If the client opts for a number of lighter tests than advised, a table is created that shows a
lot of O’s. If this table is shown repeatedly in progress reports or meetings, it gives two
impressions: 1) the client is reckless, and 2) the test manager does not entirely approve
and is distancing himself from the test method of operation. For that reason, it is advisable
to use this table style only at the beginning and end of the test phase.

3) Consolidating the test plan

Following the feedback and possible adjustment of the plan, the test manager should
submit the test plan to the client, at the least, for approval. Whoever else has to give their
approval depends on the organization. In many organizations, the test plan is also
submitted to other stakeholders for approval, such as users and developers. Parties for
whom requirements are set in the assumptions part of the plan should give their approval.

Tips

« To make creating a test plan easier and prevent approval delays, it may be decided
to have the test plan approved in parts

e The degree of formality of the approval depends on the organization. In some
organizations, it is advisable to enforce the approval formally by having the test plan
signed by the client and/or other stakeholders. In other organizations, the sending of
approval by e-mail or a verbal confirmation will suffice.

The planis then placed under configuration management as a formal test product.
Besides this, a presentation, for example to the various stakeholders, can conftribute to
obtaining approval and — at least as important — create support throughout the
organization.

Products
The test plan.

Techniques
Not applicable.

Tools
Not applicable.

4.3.3 Control phase

Aim
Providing the client with sufficient insight into, and the opportunity to influence, the

following:
- The progress of the test process

239



- The quality and risks of the test object
- The quality of the test process
To this end, the test manager manages the test process optimally and reports on it.

Context

The activity referred to relates to the system test or acceptance test. The testing may
relate to new build, maintenance, migration, a package implementation or a mix, and
the development approach may be waterfall, iterative, agile or — again — a mix.

Preconditions
This activity begins after the creation of the test plan.

Method of operation

The test manager and the administrator(s) perform the activities assigned to them in the
test plan. They manage the test process, the infrastructure and the test products. Using the
data thus obtained as a basis, the fest manager analyses possible frends. He also keeps in
close touch with developments outside of the testing, such as any delays on the part of
the developers, upcoming major change proposals and project corrections. If necessary,
the test manager proposes particular measures to the client.

Information is the most important product of testing. Therefore, the test manager provides
various types of reports to the different target groups, bearing in mind the BDTM elements
of Result, Risks, Time and Costs.

Roles/responsibilities

The test manager, also known as test coordinator, has primary responsibility for the
management of the test process.

240



Activities
The control of the test process covers the following activities:

1. Management
2. Monitoring

3. Reporting

4, Adjusting

The scheme below shows the sequence and the dependencies between the various
activities:

start 1|——|2|—|3|—|4|— end

4.3.3.1 Management

Aim
Managing the test process, the defects and the fest products with the goal of providing

continuous insight info the progress and quality of the test process and the quality of the
test object.

Method of operation

The management activity can be divided into two sub-activities:

« The following forms of management are carried out in accordance with
procedures established in the test plan: the management of the test process, test
product management and defect management. Infrastructure management is
part of the “Setting up and Maintaining Test Infrastructure” phase.

» The test process is supported by — and checked for the application of — norms and
standards.

These operations fall within the role of administrator or fest manager. The following
administrator roles for this are distinguished: test project administrator, testware
administrator and defects administrator.

In more detail

The real challenge in management is not so much following procedures, but ensuring that
the other test team members do so. Matters such as submitting fimesheets, placing the
testware under configuration management and carefully administering defects are not
equally high in the popularity stakes among all testers. Measures for ensuring that this
remains in focus are:

+ “Repeat, repeat, repeat” the message that good management is crucial to the
success of the test process. Make the reasons and advantages clear

»  Make "management and confrol” a fixed subject in the periodic tfeam meeting

* Remind people (directly) when they do not, or do noft sufficiently, keep to the
agreements

» Check activities and results, particularly at the beginning of the process to prevent
bad habits from starting, and at the start of the test execution when the testers are
working under time pressure.

241



N.B.: The test manager can take on the role of supervisor, or delegate it to another
individual. Obviously, in the latter case the person should have the full support of the test
manager when he admonishes someone for not complying with the procedures.

In practice, the setting up of norms and standards takes place concurrently with the
development of the first products, so they do not exist at the time of writing the test plan.
The supervisor will have the task of supporting the development of the first products and
subsequently of creating generally applied templates.

Products
A managed test process.

Techniques
Not applicable.

Tools

Defects administration fool

Testware management tool

Workflow tool

Planning and progress monitoring tool

4.3.3.2 Monitoring

Aim
Monitoring the test process, based on internally managed data and external information.

Method of operation

The principal and most difficult task of the test manager is the monitoring of the execution
of the plan.

While this is described in the section below as mainly an instrumental activity, it is equally a
communication activity. The biggest part of the test manager’s task perhaps consists of
“monitoring” the employees on the team. This includes everything, from recruiting new
testers during the testing process, delegating the work, holding work consultations/team
meetings, supporting, coaching and assessing employees, up to and including the
conducting of exit interviews. Another very important task for the test manager in this same
connection is the maintaining of contact with the world surrounding the test team, also
known as stakeholder management or expectation management. Do the expectations of
the test clienfts sfill correspond with what the test is going to delivere Are there
developments in the project that will influence the test process? It should be obvious that
highly developed social and communication skills would not go amiss here.

In general, the activities described in the plan — such as preparing, specifying and
executing the tests — should be carried out according to a particular timeline and in a
particular sequence. To do this, the test manager has the necessary people at his disposal
(including himself). He sets out a detailed planning for the coming period, outlining who
will do what, in how many hours. This is necessary, as the planning within the test plan is not
detailed to the extent that tester A knows that, in the coming week, she should specify test
units X and Z, and tester B knows that he is to carry out test scripts Y1 and Y2 for test unit Y.
Experience shows that such detailed planning only works for the initial short period, after

242



which changes are always taking place, requiring the planning to be revised. Most
obvious periods for which a detailed planning can be set up are the phases: Sefting up
and maintaining infrastructure, Preparation, Specification, Execution and Completion. With
iterative system development, the test manager also makes a detailed planning per
iteration. In setting up a detailed planning, the test manager makes allowance for all the
aspects of planning, such as priorities, availability and skills.

Another of the test manager’s tasks is fo fill in “blank spaces” in the test plan during the
course of the test process. This is the case when, at the time of setting up the plan, certain
information is missing or there is no time to carry out a particular activity.

In more detail

For example, the allocation of test units and/or test techniques. Occasionally, information
from the developers is lacking, so that it is not possible to arrive at a satisfactory distribution
of test units. The test manager may also decide to delay the allocation of test techniques
to test units until the testability review has been carried out.

Towards the end of the test execution, the monitoring becomes even more important, as
the test manager must then be able to answer the question of whether stopping testing is
justified. The exit criteria formulated in the plan are the deciding factors here, but if they
are absent or no longer current, there are some rules of thumb available:

« Have all the planned tests been executed (in accordance with the latest test
strategy)? This emphatically does not concern the original strategy, but the latest,
amended version. This contains the most recent insights of the client and test
manager into the balance between risk and test coverage

* Are the number and degree of severity of the outstanding defects at an
acceptable level?2 And to this may be added: have the costs of the testing during
this period risen higher than the refurns (“damage prevention”, see below)?

* Has the number of newly found defects as well as the number of solved and
retested defects been reduced to a minimum during the latest period (e.g. week)?
This last point says something about the stability of the system. Sometimes, in the
last period, so much has been reworked and retested that the system has several
releases per day. If only both of the above points were to be considered, it could
be decided to stop testing. However, the system is still anything but stable, and a
regression test is sfrongly to be advised.

Only when a positive answer can be given to these questions does it make sense fo
recommend ending the testing.

After the test team has completed all its tasks, including the Completion phase, the test
manager asks the client to terminate the assignment and to discharge the test team. The
team is then disbanded.

Tips

e Damage prevention: one of the benefits of testing is that in production costs do not
arise because faults do not occur. This could possibly be conveyed by relating the
severity and cause of a problem to any repair costs after going info production: what
would the costs have been if the defect had not been found?

e |tis possible to make a model with which the prevented damage of each defect can
be estimated. In this, a certain factor is allocated to aspects of a defect (severity,
cause and quadlity characteristic), e.g. a severe defect delivers on average 8 times the
damage of a cosmetic defect. By estimating the prevented damage of a limited

243



number of defects with the aid of experts, the factors are determined and the
average sum per defect. The prevented damage of a new defect can then be
quickly estimated by mulfiplying the average amount by the relevant factors (see
[Aalst, 1999])

* Asimple but useful graphic is the S-curve of the cumulative number of found defects
per day (see figure 48). Where the S starts to flatten out, this could be an indication for
stopping the testing. In any case, it is an indication that it is time to discuss whether or
not to stop with the stakeholders.

I

Cumulative
number of
found defects

Time ———

Figure 48. Example of S-curve.

Practice also teaches us that the original plan is bound to be amended. The amendments
can have both internal and external causes, i.e. from both within and beyond the test
process. It is up to the test manager to flag these events or frends as early as possible.
Measures for redirecting a negative frend can then be adopted promptly. This is almost
always better, cheaper and faster.

In more detail

While in practice there has probably never been a project where the plan was carried out
unchanged, this does not mean that the plan is somehow unimportant. On the conftrary,
the plan provides a common framework that makes correcting the process easier and
more effective than when working without a plan.

Information about the events or frends comes from the internally managed data and from
outside the test process, e.g. minutes or memos, but not least also from verbal
inferchange, such as the project consultation, stand-up meetings, bilateral discussions,
etc. This is where a good social (project) network shows its worth to the test manager.
Using this information, the test manager analyses possible trends and tries to apprehend
threats (or indeed opportunities) in time: will the trend continue? What needs to happen o
prevent it

For this purpose, the test manager carries out the following steps:

1. Analyzing the event, estimating risks and defining countermeasures

2. Coordinating with the client and other stakeholders (optional, depending on
tolerance)

1) Analyzing the event, estimating risks and defining countermeasures

The test manager analyses the cause of the event and determines the consequences for
the test process. He also examines the significance of the event explicitly in respect of the
risks that are covered at this stage of the festing. Events can influence the testing positively

244



or negatively, and the test manager determines the possible countermeasures, depending
on the timing of the event, the analysis and the consequences for the test process.

In more detail

Below are some examples of common events and their causes, consequences and

countermeasures:

Event

The test object is delivered later than planned, while the deadline
for the test process remains the original date.

Possible causes

The causes of this will usually lie in the stage preceding the testing
phase. Likely causes are higher degrees of complexity than
expected, differences of opinion or expansion of the scope.

Consequences for the
test process

There is less time for the execution of the test cases

There is more fime for specifying test cases

The required means for the test execution, such as a
representative test environment, do not need to be available
until later

Etc.

Possible measures

Extra test capacity is requested for the test execution

The test cases are described more comprehensively during the
specification phase, making their execution simpler for
inexperienced testers

Tests are carried out in parallel with each other

Allowing for the risk category, it is decided to reduce or skip
certain test activities

It is decided to push certain test levels or test types together,
so that they can be carried out collectively

The roof tile method in respect of the specification of test
cases and execution, i.e. delivering smaller batches more
often from development to testing

An increase in budget is requested

Efc.

Event

The productivity of the employees is lower than expected.

Possible causes

The quality of the test basis is less than the advance estimate
The employees have on average less experience than was
expected in estimating productivity

The test object is more complex than previously estimated, so
that setting up the test cases is more difficult

Efc.

Consequences for the
test process

The test activities take longer than planned.

Possible measures

Employees are replaced by others with more experience

Extra capacity is requested from the client

The test method of operation is adjusted, so that less risky parts
are given still less attention, and more time is made available
for the risk-bearing parts

A decision is made not to process all the test cases extensively
and, for example, only to create logical descriptfions (this
generadlly places higher demands on the tester who executes
the test)

Etc.

245




Event

Specifying the test cases takes more time than was planned.

Possible causes

¢ The test basis is of less quality than was planned

¢ The productivity of the employees is lower than was previously
estimated

* Ftc.

Consequences for the
test process

Overrun of test specification can mean that the test execution
cannot start on time.

Possible measures

¢ Techniques are selected that will result in fewer test cases. This
also means that there will be less test coverage and that the
recognized risks will have less coverage

¢ The logical test cases are not written out into physical test
cases (this generally puts higher demands on the executor of
the test)

* Extra fime or capacity is requested from the client

e Exira support is provided by subject-matter experts or
developers

* FEtc.

Event

The test basis keeps changing.

Possible causes

¢ The test basis is of lower quality than was planned

e The scope of the project keeps increasing

* There are differences of opinion in the project concerning the
functionality to be delivered

* FEtc.

Consequences for the
test process

e (During specification and execution) The test specifications
need to be continually reviewed and are never completed
* (During execution) Extra retesting is required continually

Possible measures

¢ The logical test cases are not written out into physical test
cases (this generally puts higher demands on the test
executor)

* Exploratory testing as a technique in order to be less
dependent on the test basis and also to put off the need for
this as far as possible

e Exira fime or capacity is requested from the client

e Stricter configuration and change management at project
level, (obviously with involvement of testing)

* FEtc.

In more detail

Retesting

A specific part of the strategy is how to deal with retesting. Normally, a test delivers defects
that are then reworked. A choice must then be made as regards retesting. For example,
limited retesting can be carried out, focusing only on the adjustment. Another possibility is
to carry out retesting of the total function in which the adjustment was implemented, of
the total function in conjunction with surrounding functions, or even of the total system.
The change can also be retested with specific test cases and a regression test can be run
on the (unchanged) rest of the system. The choice of the degree of retesting is made
based on the risks. Sometimes guidelines are in place; sometimes the test manager
determines the retesting level from case to case. In fact, the test manager takes a kind of
mini test-strategy decision, with all the steps being gone through briefly.

246




2) Coordinating with the client and other stakeholders (optional, depending on
tolerance)

Depending on the measures to be carried out, the test manager can carry them out
independently, or prior agreement with the client and possibly other stakeholders may be
necessary. The form that this coordination takes depends on the organization. In practice,
use is offen made here of reports.

The margin that the fest manager has for taking measures independently is determined by

the following factors:

= The degree to which the difficulties of the test process can be solved within the set
assignment, the product risk analysis, the fest strategy, budget, planning and other
preconditions. In other words: the degree to which the client is to be left out of it

= The degree to which the difficulties can be solved within the limits of tolerance, which
were agreed in the planning phase.

In practice, the test manager should generally ask permission if the measures would
influence the agreements that were made at the planning phase. In other words, if
adjustments have to be made to the formulation of the assignment, product risk analysis,
test strategy, budget and/or plan.

In more detail

The devil’'s quadrangle

A familiar trend is symbolized in the ‘devil’'s quadrangle’, with Time, Money, Functionality
and Quality as the corner points. At the start of the project, there is a certain balance
between the points. A predictable course of events is that all kinds of unforeseen events
occur that infroduce tension into the quadrangle (see figure 49). In particular, certain
activities overrun (Time) and/or cost much more than was estimated (Money). The project
manager corrects this by putting restrictions on the other corner points, i.e. Quality and
Functionality.

1 Time

Functionality Quality

Money

Figure 49. The devil's quadrangle.

Although in itself this is not necessarily “wrong” behaviour on the part of the project
manager, it is the test manager’s job to monitor Functionality and Quality. Bearing the

247



quadrangle in mind, the test manager indicates the consequences of the project
manager’s decisions and alerts the client, for example, if the choices repeatedly fall on
restricting Quality and Functionality. Timely communication of this frend in particular is
difficult, which emphases the importance of an independent test manager. Depending
on their perceptions, the test manager is either the “conscience” or the “thorn in the side”
of the project manager and/or client. This role requires a high degree of professionalism,
for the test manager has to tfread carefully regarding the politics of the various interests
within and beyond the project.

Tips

« Atip that can be given in the above context is, when changes are requested or
when the project manager proposes adjustments to the testing, never immediately
to dig one’s heels in and cry “No, not possible, because ..." It is better to respond in
the manner of, “Hmm, interesting idea. Let's tease that out a bit further; what
would it mean in relation to... The idea could work if we all accept these and those
consequences.”

- At the Preparation and Specification phases, the (project) management tends
towards indifference in respect of the testing. Only at the test execution stage, at
the point when the testing is on the critical path, is interest shown in the progress.
The test manager should make allowance for this, by, for example, adjusting the
form and frequency of reporting and consulting (more of it, and more frequently,
during the test execution) and, in the process, might well transform his image (from
“walk-on part” to “star”).

Products
Proposed management measures.

Techniques
Not applicable.

Tools

Defects management tool

Testware management tool

Workflow tool

Planning and progress-monitoring tool

248



4.3.3.3 Reporting

Aim
Creating reports that provide insight info both the quality of the test object and the

progress and quality of the test process. These reports will ensure that the client and other
stakeholders can steer the course of the testing effectively.

Method of operation

During the test process, the test manager compiles various reports. The form and
frequency of reporting is established in the *“Management” chapter of the test plan.
Periodic reports are created on the quality of the test object and the progress and quality
of the test process. Besides the periodic reports, the client or other stakeholders may
request reports on demand. The most familiar example of this is the risk report, for outlining
the possible consequences of a threat orrisk to the testing. There may also be an
unexpected request for an extra progress report, for example to provide the most up-to-
date input for a steering group or project management meeting. At the end of the test
process, a recommendation for release and final report are drawn up.

With all this information, the client, project manager and other stakeholders are supplied

with insight into the extent to which:

¢ The intended result is achieved

* The risks of taking the system into production are known and are as small as possible
within the set preconditions

* This has taken place within budget and term.

In other words, this refers to the BDTM aspects of Result, Risks, Time and Costs. Supplying

insight implies that the report should have relevance to the recipient(s) of it.

The reports are based on the data as established in accordance with the section on
“Organizing the management”.

Tips

« Always report accurately and completely; it is in nobody's interest to present
matters in an exaggerated light

* Report with precision and substantiate with reliable figures

* Reportin the terminology of the client, not only in numbers of defects

* Report positive news, too, for example the number of test cases that have been
processed without defects

+ Regarding the level of detail in the report, answer the needs of the target group

* Be neutral in the wording; don't get personal

« Respond to questions like “Can | go into production2” or “Can it be accepted?”
preferably not with “Nol!”, but with “Yes, provided that ..."” or “Nof unless ..."”

The content of the most important reports is described below:
a. Progress report

b. Risk report

c. Release advice

d. Final report

249



a) Progress report

Reporting takes place in accordance with the reporting sfructure described in the test
plan. The progress report contains data on the most recent reporting period and
cumulative data on the entire test process.

Besides figures, the report should also provide textual explanation and advice on the
results, progress, risks and any problem areas. The latter is inclined to be forgotten in reports
that are generated from test-management tools. It should be realized that explanation
and advice are very important in the provision of quick and reliable insight into the figures.
It is the most important product of testing. While the explanation can and should be given
verbally, it most definitely should be contained in the written report. This forces the test
manager to think carefully, as well as making the advice stronger, reaching a wider
audience and helping with the process evaluation in retrospect.

In more detail

Progress report versus final report

Although the ferms ‘interim report’ or ‘progress report’ may suggest that these are less
important than the final report, in fact the opposite is true. The progress report supplies
early information and advice, with which the recipients (such as client, project manager
and others) can often make timely adjustments for keeping the total process on the right
track. The final report is more a retrospective evaluation that mainly benefits subsequent
test processes and projects.

In outline, a progress report has the following content (based on the BDTM method with
the four aspects of Result, Risks, Time and Costs). In practice, the list of contents may follow
a different sequence; subjects may be combined, or even omitted. It depends on the
report’'s target group.

1. Status of the test object (BDTM: Result)
1.1 Status per characteristic/object part
1.2 Status of test goals
1.3 Trends and recommendations
2. Product risk and strategy adjustment (BDTM: Risks)
3. Progress of the test process (BDTM: Time and Costs)
3.1 Progress (in hours and data) of activities or products over the recent period
3.2 Activities in the coming period
3.3 Hours lost
3.4 Trends and recommendations
4. Problem areas/points of discussion (all the BDTM aspects)
5. Agreements
6. Quality of the test process (optional, all the BDTM aspects)
6.1 Effectiveness
6.2 Efficiency
6.3 Verifiability

These subjects are further explained below.

250



1. Status of the test object (Result)

1.1 Status per characteristic/object part

It is shown per characteristic/object part:

« The status of the tests (not started, planned, specification, execution, retest X,
completed), optionally with the progress percentage, e.g. the progress of the
execution is estimated at 60%

« Overview of numbers of defects (sorted by status and severity, optionally also by
other aspects, such as cause)

« |If test products (such as test cases or test scripts) are seen emphatically as results,
they can also be included in the overview, with an indication of whether a start has
been made on the product and whether it is ready.

The closer the end of the test period approaches, the more attention is paid in the
progress report to the consequences of open defects. In the beginning, it is less useful to
include this in the report, since it is expected that the defects will be solved. But the
conseqguences should always be included in the defect report itself.

+ Defects that remain open and theirimpact

+ Defects not solved (known errors), and theirimpact.

1.2 Status of test goals

Based on the above, the status per test goal (user requirement, business process, critical
success factor, etc.) is reported. Sometimes a test goal can be directly linked to a number
of characteristics/object parts and to the test status related to them; sometimes the status
per characteristic/object part is not sufficiently usable and the test manager sfill has to
determine the test status per test goal. The risk tables from the Product Risk Analysis make
the link possible.

1.3 Trends and recommendations
Relevant tfrends and related recommendations can be reported here.

In more detail

Below are some overviews that will reveal whether certain tfrends are taking place:

+ The number of open defects per week will indicate whether the testing can tail off
orif a backlog is building up

» The relationship between numbers of defects and test cases per subsystem
provides an indication of whether extra testing on that part will deliver many more
defects

» The number of found defects and number of solved (including retested) defects
within a certain period says something about the stability of the system

+ Status of the defect versus who should carry out the following step in the handling
of it. This shows up where any bofttleneck lies. For example, where all the complex
faults are allocated to that one experienced developer, with the result that a
backlog of unsolved defects is created

« Cause of defects (requirements, design, code, test environment, wrong
installation/operation, wrong test case) versus subsystem. Provides insight into the
concentrations of specific mistakes

* Number of defects versus tables (with data warehousing). This tells us what the
error-sensitive system parts are.

251



In more detail

In order to give the trend significance for the stakeholders, it is advisable to use graphics,
making the trend visible. This is not as easy as it seems. It is difficult to produce a clear and
legible graphic. A few tips (quoted freely from [Tufte, 2001]):

1. Make the data and the message the centerpiece

2. Maximize the data/ink ratio (i.e. leave out all the symbols, lines and colors that

don’'t add anything)
3. Remove redundancies
4. Review and amend.

2. Product risk and strategy adjustment (Risks)

In this part of the report, the stakeholders are given insight intfo the degree to which the
coverage of the various product risks has changed, as well as into any process risks.

In the test plan strategy, it is determined whether and to what degree product risks will be
covered by testing. During the test process, aberrations may occur: the estimate of the risk
appears different and/or the test coverage requires adjusting. The adjustments over the
reporting period, with associated consequences, are reported in this part. In this, the
translation is made info the test goals: what kind of impact will the changed risks have on
the attainment of these goals?

3. Progress of the test process (Time and Costs)
Regarding the progress of the test process, the points below are significant.

3.1 Progress over the latest period

At the level of phases and/or main products, the following could be reported:

- Number of planned hours

- Number of hours spent so far

- Number of hours expected still to be spent

- Percentage completed

- Dates: planned/expected/actual start date; planned/expected/actual end date.
Products could be the test plan, test scripts, test-execution files and reports.

If the test manager is responsible for the budget, he will also include in the progress report
information on completing the test process within budget.

3.2 Activities in the coming period
Here, the activities to be carried out in the coming period are reported.

3.3 Hours lost

This refers to non-productive hours of the testers. If the test process environment does not
meet certain preconditions, this will result in inefficiency and loss of hours. Examples are a
non-functioning test infrastructure, much or lengthy test-obstructing defects or lack of
support. Hours lost, and the causes, are reported here.

3.4 Trends and recommendations

As with trends in the status of the test object, frends and recommendations in connection
with the progress of the testing should also be reported. The central question here is
whether the agreed milestones are (or appear to be) feasible.

252



In more detail

One of the trends that can be watched is the average time required for the reworking of a
defect. If this increases, it is possibly a signal that the volume of the backlog of work is
increasing sharply. The percentage of wrongly reworked defects can also be observed.

4. Problem areas/discussion points (all the BDTM aspects)

In this section of the report, the test manager points out any problem areas or points for
discussion that jeopardize completion of the test assignment within the set limits of time
and costs. For example:

- The test object being delivered later than planned

The quality of the test basis being less than expected

The test environment not being available on the agreed date

Test-obstructing defects present in the test environment or test object.

Besides the various problem areas, their consequences and possible measures are shown.
Here, too, the test manager makes the franslation into the test goals.

5. Agreements

This part shows the agreements made in the current period between the test team and
other parties that are relevant to the recipients of the report.

6. Quality of the test process (optional)

If required, this part of the report can include information on the quality of the test process.
The following questions play a part here (see figure 50):
- Are the significant defects being found (as early as possible)? (Effectiveness)
- How economicalis the test process with time and resources? (Efficiency)
- Is the test process working as agreed? (Verifiability)
Means

(resources, time efficiency

verifiability

Test process

Test results

Test object >
(advice, defects)

Effectiveness

Figure 50. The three quality aspects of the test process

In more detail
A point of focus here is the general problem with metrics: how to draw the right

conclusions from the figures; how to avoid comparing apples and oranges. See also
section 4.11 “Metrics”.

253



Effectiveness
In more detail

The difficulty with the question of whether the testing is effective, is that this can usually

only be established in retrospect. The effectiveness issue can be split into two parts:

- Is there a good strategy in place?

- Is the testing being carried out in accordance with this strategy?

There are various indicators that can be included in the report:

* The percentage of found defects in the test level / the number of defects present or
an approximation thereof; the number of defects can be approximated by, for
example, the number of defects sfill being found during the first 3 months of
production

* The percentage of found defects in a test level that should reasonably have been
found in a preceding test (30% of the defects found in the acceptance test concern
programming defects; these should actually already have been found in the
development tests and system test)

« Degree of testing coverage; the more thorough the test, the more defects will be
found

* The percentage of mistakes (= test faults).

Efficiency
In more detail

The following are possible indicators of this:

* The number of defects found per test hour

* Estimating prevented damage in relatfion to the test costs (through finding faults)
*  Number of specified or executed test cases per hour

« Number of reviewed pages per hour.

By comparing these figures with an established standard, a picture is created of the
efficiency of the test process.

Verifiability
In more detail

This aspect is difficult to communicate through indicators. What the test manager can say
in the report about this is whether and how in the latest period it was verified that the test
team was working as agreed. The verification can focus on the test products or the
processes and can be based on the planned quality measures, or on monitoring, or on a
random check at the overall level. The test manager should make a good risk estimate as
regards what checking would be useful. In particular, the test levels that are placed with
inexperienced test managers or that have been outsourced are eligible for verification.

Below is an example of a dashboard, enabling the most important information to be seen
at a glance.

Part Is Was Remarks
1. Quality of test object ©

2. Risks e ®
3. Progress © ©
4 Quality of test process © ®

Later in the report, these points are worked out in detail in overviews with notes. Examples
of overviews (without notes):

254



Quality of test object - defects

Open To be retested Closed TOTAL
Obstructing 4 4
Severe 1 1 12 14
Disruptive 3 12 49 64
Cosmetic 15 7 37 59
TOTAL 19 20 102 141

Quality of test object - subsystem x causes

Require- Design Software Infra- Test TOTAL
ments structure
Subsystem 1 3 5 18 6 2 34
Subsystem 2 1 16 2 4 23
Subsystem 3 6 14 30 14 1 65
Total system
TOTAL 9 20 64 22 7 122
Progress
Time Hours
Milestone/Activity Plan Expected | Realized Estimate | Spent | Tobe Diff.
(A) (B) spent (A-B-C)
(€)
Planning
- Test plan Apr 1 Apr 1 60 54 0 6
Preparation
- Detailed intake Apr 8 Apr 12 40 46 4 -10
Specification
- Test unit 1 May 2 May 2 120 60 60 0

b) Risk report

The purpose of the risk report is to supply the various stakeholders with sufficient information
to allow them to make informed decisions in respect of the test process. The information in
the risk report should therefore also focus on the consequences of the event for the
achievement of the agreed result within the agreed fimeline and cost levels.

In more detail

The test manager creates a risk report if events take place for which measures are
required to be taken that the test manager is not authorized to decide upon.

Another reason for creating a risk report is if the client asks the test manager to set out
consequences and possible measures for one or more scenarios upon which a decision is
required to be taken. For example, a scenario in which the client sees that the
development activity is overrunning and he considers making budget available from the
test.

In arisk report, at least the following subjects are dealt with:

- A description of the event / the scenario

- The consequences of the event for the testing

- The significance of the event to the degree to which the various product risks are
covered

255




- Possible countermeasures

- If possible, the test manager outlines several measures with the associated costs. An
estimate is also made of the influence of the measures on the recognized
consequences and degree of coverage of product risks

- Recommendation
The test manager provides a recommendation in respect of the measure(s) fo be
selected.

c) Release advice

The release advice is created at the end of the test execution. The purpose of the release
advice is to provide the client and other stakeholders with a level of insight into the quality
of the test object that will allow them to make informed decisions on whether the test
object can go on the following stage with its present status. The following phase in this
connection refers to a subsequent test level, or production. For that reason, the release
advice is usually created under severe pressure of time, since immediately after execution
of the last tests and before the test object is released to the next phase, there is usually
very little time available. The test manager would do well to have a draft release advice
largely prepared towards the end of the last tests, so that only the last test results need to
be processed.

The information in the release advice should not actually come as a surprise to the client.
He has been kept abreast of developments relevant to him by means of reliable progress
reports and, where necessary, risk reports.

In order to supply the client with the information necessary at this stage, the release
advice should cover at least the following subjects:

+ Arecommendation as to whether, from the point of view of the testing, it would be
advisable to transfer the test object in its present state fo the next phase
The final decision on whether or not to go on to the next phase does not lie within the
test process. Many more factors are at work here, other than those relating to the test
process. For example, political or commercial interests that make it impossible to
postpone transfer to a subsequent phase, despite a negative release advice

» Obtained and unobtained results
Which test goals have been achieved and which noft, or only o a certain degree? On
the basis of test results on characteristics and object parts, the test manager gives his
opinion and advice on the test goals set by the client. It is also indicated whether the
exit criteria have been met. The number and severity of the open defects play an
important role here. Per defect, it is indicated what the consequences are for the
organization. If possible, risk-reducing measures are also indicated, such as, for
example, a workaround, allowing the test object to go on to the next phase without
the defect being solved.

* Risk estimate
During the planning phase at the beginning of the test process, an agreement is made
with the client about the extent to which product risks will be covered, and with what
degree of thoroughness. For various reasons, it may be decided to cover certain parts
less thoroughly with testing than the risk estimate indicates. Moreover, during the test
process, all kinds of changes are sfill usually being made to the original strategy;
moreover, the original risk estimate has possibly been adjusted, perhaps resulfing in
addifional or different risks. In this part of the release advice, the test manager points
out which characteristics or object parts have not been tested, or have been less
thoroughly tested than the risks justify and so present a higher risk. The associated
consequences are also shown.

256



d) Final report

The purpose of this report is to obtain insight info the way the test process has gone and fo
document empirical data for the purposes of future test processes.

The final report is created afterissuing the release advice, usually when the test object has
already been released to the next phase. More time is therefore available for it.

The contentfs list of a final report is more or less the same as that of a progress report:
1. Evaluation of the test object (BDTM: Resulf)
1.1 Status per characteristic/object part
1.2 Status of test goals
2. Product risk and strategy adjustment (BDTM: Risks)
3. Release advice (BDTM: Result, Risks)
4. Evaluation of the test process
4.1 Progress (BDTM: Time and Costs)
4.2 Quality of the test process (BDTM: all the aspects)
6. Recommendations for future tests
7. Empirical data (optional)
8. Costs/benefits analysis (optional)

However, whereas a progress report looks ahead, the final report looks back. In other
words, it mainly concerns the difference between the original plan and the final
realization. What degree of deviation is there from the original plang Was the plan a good
one, or were issues wrongly estimated? Were adjustments always timely and effective? To
what extent were the preconditions met, and met promptly enough? Could bottlenecks
have been prevented? These differences are analyzed in particular for purposes of the risk
analysis, test strategy, estimate and planning. The quality of the test process is also
considered: were the chosen procedures, tools and techniques used correctly and was
the test environment satisfactorye Recommendations are provided, if possible, for future
tests. The activity ‘Evaluate the test process” (see section 6.8.1) supplies the input for this
evaluation. Also, use can be made of the “Test process evaluation” checklist. In addition,
empirical data may be collected and made available to the client, or, even better, to a
Testing line organization. A last, optional, part of the final report is a costs/benefits analysis.

The final report is made available to the client and other stakeholders, possibly by means
of a presentation.

In more detail

Empirical data

Examples of empirical data are:

e Size of the fest object

e Development effort

*  Number of defects

* Duration and hours per main activity

* Duration and hours required for specifying tests
» Duration and hours required to execute the tests
e Number of test cases

*  Analysis of lead fime per defect

*«  Number of defects to be expected

e Number of retests.

257



A comprehensive summary of the empirical data that can be collected is included in the
list “*Metrics list”. That section (4.11) also discusses the Goal-Question-Metric method for
implementing metrics

Costs/benefits analysis

The costs of the test process are relatively simple to establish. Bear in mind, for example,
the costs of the used resources, manpower and equipment. The benefits of the test
process, however, are more difficult to establish. As indicated in the section “Why test”,
there are four types of benefits of testing. It is difficult, but not impossible, to provide a
quantitative indication of these.

Products

Reports (progress report, risk report, release advice, final report)
Empirical data
Costs/benefits analysis

Techniques
Checklist “Test process evaluation” (www.tmap.net)

Tools

Defects administration

Testware management tool

Workflow tool

Planning and progress monitoring tools

258



43.3.4 Adjusting

Aim
Adjusting the test process (in consultation with the client as necessary).

Method of operation

When the proposed measures have been reported, the client has agreed and a selection
has been made from one or more of the possible alternatives, the test manager can put
them into effect. To this end, he carries out the following steps:

1. Implementing measures and evaluating effectiveness

2. Adjusting products from the planning phase (optional, dependent on tolerance)

3. Feedback to the client

1) Implementing measures and evaluating effectiveness

In this step, the fest manager implements the (approved) measures. After some time, he
assesses whether the desired effect has been reached with the adopted measures.

2) Adjusting products from the planning phase (optional, dependent on tolerance)

The measures can have consequences for the agreements as set out in the test plan. In
that case, the test manager adjusts the products concerned and submits them to the
stakeholders for approval.

Examples of adjustments to the various products are:

= The scope of the assignment is adjusted. This is the case, for example, if it is decided to
carry out one or more exira test types, or to omit them

= The product risk analysis is revised, because during the execution of the test process it
appears that the probability of faults was wrongly estimated. This is the case if the
development tests were limited because of pressures of time

= During the test execution, changes will be made in particular to the test strategy if the
test intensity or method of operation is amended. For example: under pressure of time,
it is decided to create no more test cases for the testing of screens, but to use a
checklist

= Many of the events mentioned in the section on “*Monitoring” have consequences for
the budget. A common example of such an eventis delay in delivery of the test object
while the deadline for the test remains unchanged. The planned coverage is then only
feasible if extra people are brought in, resulting in lost time (initiation) and
management overhead.

Since the formulation of the assignment, product risk analysis, test strategy and estimate
are required to be consistent with each other, a change in one of the products will usually
lead to changes in the other products. Changes to the test plan are established in a new
version or in a supplement, which is again submiftted to the client for approval. It is the fest
manager’s responsibility to communicate clearly to the client the consequences of the
changes.

3) Feedback to the client

In this step, the test manager reports to the stakeholders, such as the client, on the
measures taken and their consequences for the test process. If the client (and possibly
other stakeholders) were involved earlier in giving permission to adopt the measure, this
report will generally contain no new information. Even if the test manager is able to

259



implement the measure independently, the event and associated measures are reported
to the stakeholders to keep them abreast of the testing developments. The periodic
progress report is a suitable means for this.

Products

Steering measures
Amended plan

Techniques
Not applicable.

Tools

Workflow tool
Planning and progress monitoring fool.

43.4 Setting up and maintaining infrastructure phase

Aim
To provide the required test infrastructure, which is used in the various TMap phases and
activities.

Context

The test infrastructure consists of the facilities and resources necessary to carry out the

testing satisfactorily. A distinction is made between the facilifies for test execution (test
environmentfs), for supporting the testing (test tools) and for the day-to-day work of the
testers (workplaces).

Definition

The test infrastructure consists of the facilities and resources necessary to facilitate the
satisfactory execution of the test. A distinction is made between test environments, test
tools and workplaces.

The setup and maintenance of infrastructure involves specific expertise. It is something that
testers in general have limited knowledge of, but upon which they nevertheless are very
dependent (without infrastructure, there can be no test). All the responsibilities surrounding
the setting up and maintaining of infrastructure are therefore often given to a separate
maintenance department, necessitating close co-operation with these other (somefimes
external) parties during the test. This means that test managers land in a situation where
they have no authority over the setup and maintenance of the infrastructure (the
maintaining party has the say-so), while they nevertheless depend on if. This can lead to
conflict. For example, the situation could arise in which this maintaining party gives priority
to solving production-disrupting problems above solving problems in a test environment.
Furthermore, a maintenance department often also has particular security guidelines (e.g.
authorization checks, fixed backup times, installation procedures) that cannot easily be
ignored. This is something that should be taken account of during the testing and, with
that, the responsibility for the setup and maintenance of the infrastructure is an important

260




area of focus for the test manager. A means of alleviating the concern for this support
process is the permanent test organization, which will take full responsibility for the setup
and maintenance of the test infrastructure.

Example

An organization’s infrastructure is maintained by an external party, with the condition that
a daily backup of the infrastructure is made. For this purpose, an automated process is
created that makes a backup at night, somewhere between the hours of 22:00 and 06:00,
depending on other processes.

The building and testing of a new web application overruns and it is decided to extend
the time spent on testing per day. This means that the testers plan to test (in shifts) from
06:00 to 01:00 hours. It is therefore necessary to change the times of the backup process. A
request is submitted, but the external organization is reluctant to grant it. Many other
processes will have to be changed, and that could take up to two weeks. The option of
not making a backup of the test environment is out of the question for all kinds of legal
reasons. Meanwhile, pressure is being put on the test manager fo find a solution for the
problem of the overrun.

With a fest project, it is important to pay special attention to the setup and maintenance
of the infrastructure. In order to keep the focus on this during the test, there is a separate
phase within the TMap life cycle model. It is a phase that runs parallel with the phases of
Preparation, Specification, Execution and Completion. For some activities, there are
dependencies between these and activities in the other TMap phases. This is explained
later in this section in connection with the relevant activity itself.

Test environment
A suitable test environment is required for the testing of a test object.

Definition

A test environment is a composition of parts, such as hardware and software, connections,
environment data, maintenance tools and management processes in which a test is
carried out.

Hardware refers to all the tangible parts of a computer (screen, hard disk, network card, et
cetera). Test environment software refers to all the programs that should be present on the
available hardware in order to run the software under test, such as operating programs,
DBMS, network and other support programs. Connections are everything that is required to
allow the test object to communicate with other systems. The environment data is the set
of data that the test environment requires to be able to work with these (user profiles,
network addresses, root tables, et cetera). Maintenance tools are tools that are required
specifically to keep the test environment operational, and management processes are all
the activities that are carried out around the setup and maintenance of a test
environment.

Testtools

Definition

A test tool is an automated instrument that supports one or more test activities, such as
planning, control, specification and execution.

261




Test tools can be used as instruments for achieving higher productivity and/or effectivity
on the part of the testers and the testing. With the use of test tools, the emphasis is on
“support” (see the definition). This means that a fest tool is only a tool if the use of it delivers
something; using a tool should not be a goal in itself.

One of the conditions for the successful use of test tools is the presence of a structured test
method of operation. In a well-managed process, tools can certainly deliver significant
added value, but they are counterproductive in an inadequately managed test process.
The reason for this is that automation (what test fools actually do) requires a certain
repeatability and standardization of the activities to be supported. An unstructured
process cannot meet these conditions. However, the deployment of test tools can
function as leverage for implementing a structured approach. Structuring and automation
should therefore go hand in hand, in short: “Structure and Tool".

Workplaces

One of the aspects that are often forgotten in testing is the provision of a workplace,
where testers can perform their tasks effectively and efficiently in satisfactory conditions.
This involves an office setup in the most general sense, and so the workplace consists of
more than just office space and a PC. Issues, too, such as e.g. entry passes, power supply
and lunch-break facilities all have to be arranged.

If the testing is carried out in the framework of a project, extra office space should be
organized. It is advisable to bring the test feam together in one location (a room or a
floor). This will form a basis for good mutual co-operation and coordination within the
team. If that is not possible, the location of team members in various rooms should
correspond with, for example, the allocation of the various system parts to the testers, the
test types to be applied, et cetera. If developer and tester work together in
multidisciplinary teams, they should be situated together in one location.

As with every project activity, a great deal of consultation takes place in testing. Because
testing finds itself at the crossroads of the various activities in the project, testers have a lot
of contact with the various groups (such as designers, programmers, administrators and
users). It is advisable to place the test team in the vicinity of these groups. There are
examples of improved test processes thanks to the relocation of the test feam to the
physical ‘middle’ of the project organization. This resulted in, among other things,
increased mutual respect between the testers and other project participants, which
benefited the quality.

The workplace intended for a tester at first sight does not differ much from the standard
workplace. But appearances are deceiving. What is being tested is often new to the
organization and the workplace. Testers may find themselves in a situatfion in which their
workplace is unprepared for the new software. It is therefore often necessary to arrange
separate authorizations for testers. For example, testers should have the possibility of
installing the new software on their local PC, and this may also be necessary in order to use
particular test tools.

Tip

Certain test varieties can deliver a great deal of data. An example of this is the
performance test, in which a test tool is used. The output of this test tool may consist of
thousands of lines of information. Stored in files, this may well grow to several gigabytes per
test, often with printouts of over a hundred pages. It is therefore a good idea to adopt
separate measures for dealing with this. For example, extra disk space could be reserved
and an extra printer connected.

262



Preconditions

Before the setup and maintenance of infrastructure phase can be started, the description
of the required infrastructure at an overall level, including the general plan, should be
known and established in the test plan and/or master test plan. If test tools are being used,
it should be known how the various activities within TMap are to be performed.

Method of operation

On the basis of the definition of the infrastructure set out in the test plan, it is considered
whether closer specification and more detail are necessary. Besides the description of the
required resources, it is also described what is expected of the suppliers during the
mainfenance of these resources. Since different expertise is required, the realization of the
infrastructure is often carried out by other parties. From within the test project, the progress
of the realization is monitored and if the progress is threatened, actions are devised. The
realization should be completed before the Execution phase begins, but preferably earlier.
Simultaneously with the realization of the infrastructure, a checklist is created that includes
specific checks. This is used to determine, upon delivery, whether the infrastructure
supplied meefts the previously set requirements. After delivery, the infrastructure should be
kept available for the testers at the quality level determined at the start of the phase. At
the end of the test assignment, it is examined which parts of the infrastructure should be
preserved. These can then be reused in future (re)tests.

Roles / responsibilities

It is advisable to delegate the organization of this phase to someone other than the test
manager. This individual then takes the role of test infrastructure coordinator.

Activities

The basis of the Setting up and maintaining infrastructure phase is defined in the Planning
phase. Here, within the activity “Defining the infrastructure” the infrastructure required at
overall level is described, including the planning. This description (from the master test plan
or test plan), serves as input for the first activity in this phase.

The Setting up and maintaining infrastructure phase consists of the following six activities:
Specifying the infrastructure

Realizing the infrastructure

Specifying the infrastructure intake

Intake of the infrastructure

Maintaining the infrastructure

Preserving the infrastructure

ok wN =

Figure 51 (“Setting up and maintaining infrastructure”) indicates the sequence and
dependency between the various activities. Activities “Realizing the infrastructure” and
“Specifying the infrastructure intake” can be carried out in parallel. The dependency
between the end of activity “Intake of the infrastructure” and the start of the Execution
phase is significant. Before the test execution can start, there must be a correctly
operating test infrastructure.

That is why it is essential to plan activity “Intake of the infrastructure” before the start of the
test execution. It is even advisable to plan this well in advance (and the preceding
activities as well) in order to prevent any start up problems with the test infrastructure from
causing the test execution to overrun. Test execution often finds itself on the critical path of
the entire project, and so problems with the test infrastructure indirectly cause the project

263



to overrun. Also, an operational infrastructure is very handy in the Specification phase. Test
scripts can be tried out, and test data (in files, for example) implemented.

/ Ctrl /

!
7
/
[ —

Figure 51. Setting up and maintaining infrastructure

In the definition of test infrastructure, it says that a distinction is made between test
environment, test tool and workplace. For each of these three, the activities model, as
previously described, should be followed. The activities of the three parts have a mutual
relationship as regards timeliness. Activity “Intake of the infrastructure” plays an important
role here. The intake of the infrastructure forms the link with the other phases in TMap and is
also the common link between the three parts.

It is advisable to organize the workplace as quickly as possible, and it should be ready
before the testers arrive. This means it should be prepared during the Planning phase.
Often it is even necessary to have the workplace operational before the intake of the test
environment can begin. And, in turn, the test environment often needs to be operational
before a start can be made on the intake of the test tool. This is made clear in figure 51
“Setting up and maintaining infrastructure”. The setup and maintenance of the
infrastructure is a very complex operation, with many internal and external dependencies.
The organizing demands close aftention and it is therefore advisable to arrange this with
the test infrastructure coordinator.

Tip

When test tools are used for automating the test execution the operational infrastructure
must be in place before the Specification phase starts. This means activity “Intake of the
infrastructure” is completed before the Specification phase starts. This is because in the
Specification phase the automated test scripts are programmed and therefore you need
an operational workplace, an operational test tool and an operational test environment.

43.4.1 Specifying the infrastructure

Aim
To specify the description of the required infrastructure (from the master test plan or test
plan) in a more detailed level.

General method of operation

On the basis of the specification of the infrastructure contained in the (master) test plan, it
is considered whether further specification and detail are necessary. The planning of the
test environment, test tools and workplace is also worked out in more detail. Besides
describing what resources are necessary, expectations are also set out in respect of the

264



supplying party during the management of these resources. The timely involvement of the
various parties is essential. Agreements should be made for the supply and build of the
infrastructure, and these agreements should be checked at regular intervals. In
consultation with the various suppliers (internal and external) it is determined how detailed
the specification should be. The delivery times of the various parts are included in the
detailed plan.

Workplace method of operation

The specification of the workplace covers tangible subjects, such as required locations,
desks, chairs, telephones, PCs, et cetera. But it also covers less tangible things, such as
required authorizations, disk space, software, e-mail accounts, et cetera. The realization of
these aspects may take a considerable amount of time. Occasionally it requires a special
setup (e.g. project rooms) or special installation (e.g. the PCs). In other cases, items have
to be ordered. It is advisable to emphasize at this stage specific requirements that are set
in respect of management of the workplace. For example, obtaining separate status for
the testers in the solving of problems in the workplace. This can be useful, since testers are
no ‘ordinary users’ and sometimes require a different kind of support.

Test environment method of operation

In specifying the test environment, the various elements of the test environment should be
considered. Definitions can vary among suppliers and organizations. For that reason, it
should always be discussed clearly what is meant by particular terms. Another important
point is the number of test environments required and the various types there are. Each
type of test environment has its own purpose, with specific requirements applying to it.

The specifying of the technical form of the test environment should be done in
consultation with someone who has technical knowledge of the environments. This
individual should franslate the concrete requirements (based on the aim of the test served
by the test environment) into the tfechnical form. As a basis for this, an architectural
overview can be created, for example. This can be a difficult process, since two worlds
(testing and technology) speak two different languages. It is up to the test-team individual
responsible (the test manager or test infrastructure coordinator) to check whether this is
organized satisfactorily.

Besides requirements concerning the setup of the test environment, requirements should
be setin respect of the maintenance of it. Examples of requirements are:

+ The backup activities that have to be carried out

* The comprehensibility of the software versions present

* The interfaces present

« The ability to change the test environment

+ The ability to change the system date

* The use and management of test data

« Authorizations and their administration

» The required timetable for the building of a test environment.

Agreements should also be made at this point on how the test environment will be tested
(see also the activity intake of the infrastructure). Other agreements may concern the
contact with suppliers (direct by the test team or via another party) and how to deal with
licenses.

265



Example

For the testing of a new customer administration, the following requirements were set

during the specification in respect of the test environment and the maintenance of it:

e Backups are made upon request of the testers and take no longer than 15 minutes

< No changes are implemented in the environment without the explicit permission by
mail from the test coordinator

* Created backups are returned upon the test coordinator’s request within 15 minutes

* The resetting and securing of environments takes place between 20:00 and 06:00

* The operating system for the test environment is the same as that of the production
environment

e« Connection of system X and Y fo the test environment should be available between
06:00 and 20:00

e« Connection of system Z to the test environment should be available between 06:00
and 20:00 within 15 minutes of the request

e Connection with system W is simulated by a stub

« Testers have direct access to tables in the database (reading permissions)

¢ The system date should be open to change by the test feam

* It should be possible to store 4 versions of test files

« Tool A should be available for the creating or copying of complete test cases.

Tip

In some organizations, a standard set of test environments is used and the test manager
has to use these for his test. If that is the case, during this activity he investigates the
specific characteristics of these test environments and how they fit within the test
programme.

Test tool method of operation

If, in the creation of the (master) test plan, it is decided to employ fest tools, this should be
firmed up during this activity. The decision should be backed up by definite choices of one
or more tools. As made clear in the definition of test tools, they are intended to support
one or more test activities. During this specification of the test tools, it should be clear
which test activities are to be supported and how this should be done.

Products

Detailed specification of workplace
Detailed specification of test environment
Test tool(s) plan of approach

Techniques
Not applicable.

Tools
Not applicable.

266



4.3.4.2 Readlizing of the infrastructure

Aim
To realize the infrastructure according to the detailed specification from the previous
activity.

Method of operation

The infrastructure is realized during this activity. The required hardware and software are
purchased or ordered as necessary. The workplaces and test environment are organized
and the test tools installed and configured. During this activity the framework of the test
suite is built when tools are used for the automation of the test execution. Since all of these
activities require special expertise, it is usually carried out by parties other than the testers.
From within the test project (the test infrastructure coordinator) the progress of the
realization should be monitored, in case it is threatened.

This activity should be carried out in parallel with the first phases of TMap and should be
ready at the latest by the end of the Specification phase (preferably before, since time is
required for the next activity, “Intake of the infrastructure”). When the activity is carried out
depends on the part that is being realized and on the dependencies between the various
parts. For example, the workplace should be realized first, preferably in the Planning
phase. The realization of the test environment often takes a lot of time and therefore
should be started quickly. But the situation can arise in which a workplace is necessary for
the realization of the test environment. In that case, it is necessary to wait until the
workplace is ready. If the test tool uses the test environment, the installation and
configuration can only start when the test environment is ready. Otherwise, it is best to start
this as quickly as possible. When tools are used for executing the test the realization of the
infrastructure must be finished before the Specification phase starts. In the Specification
phase the tools are used for creating the automated test scripfs.

Both internal and external parties (e.g. the supplier of the test tool) play a part here. This
makes it a difficult activity to manage, demanding good coordination. The infrastructure
coordinator should check the progress and quality of the work supplied. The following sub
activities should be carried out, for example:
* Check whether all the agreements are still valid
« Have bottlenecks and problems solved and adopted measures established in new
agreements
+ Checkinstallations. The created checklists can be used for this (where possible) for
purposes of the infrastructure intake.

Products

Operational workplace
Operational test environment
Installed test tools

Techniques
Not applicable.

Tools
Not applicable.

267



43.4.3 Specifying the infrastructure intake

Aim
To specify the method whereby the intake of the infrastructure is carried out.

Method of operation

Because the infrastructure is often supplied by parties other than the test team and
because it plays a very important role within the rest of the testing, it is important to
designate a formal acceptance point. At this point, it will be determined whether the
products will serve the intended purposes and whether they meet the previously set
requirements. (It is a kind of acceptance test of the infrastructure.) This takes place by
means of an intake: an activity in which, on the basis of a checklist, it is determined
whether the workplace, the test environment and the test tool are functioning and
whether they meet the previously set requirements.

The checklist is drawn up on the basis of the specifications of the various parts. It should be
available before the end of the previous activity (realizing the infrastructure), but
preferably earlier, so that it can be used during the realization for interim checks.

This activity bears a close relation to the activity of “Specification of the test object intake”
in the Specification phase. There are situations in which certain aspects of the
infrastructure can only be checked with the aid of the test object or an early or interim
version thereof. For example, a release procedure for the test environment can only be
checked with the test object. But the correct installation of a test tool for the automation
of the execution, too, can only be checked with the test object.

Example

The following checks can be carried out for the workplace:

* Are the required PCs, printers, workplaces, telephone lines, routers, et cetera present
and correctly installed?

* Is the required system software installed?

e Is the system software the right version2

The following can be carried out for the test environment:

e Has access to the test environment been provided?

* Has access to the application been provided?

* Has access to the database been provided?

* Has the database been filled with the correct data (e.g. a copy of production)?2

e Have all the authorizations been provided?

The following checks can be carried out for the test tools:

e Are all the licenses operational?

e« Can the test tool be accessed from every workplace?

e Isthe connection between test tool and test object operational?

Products

Checklist “Workplace intake”
Checklist “Test environment intake”
Checklist “Test tools intake”

Intake procedure

268



Techniques
Not applicable.

Tools
Testware management tool.

4.34.4 Intake of the infrastructure

Aim
To carry out the intake as prepared in the preceding activity.

Method of operation

All the checks on the checklist, created during the preceding activity, are gone through.
This determines whether the test environment, test tool and workplace function and
whether they meet the previously set requirements. Any missing parts are reported to the
stakeholders by means of a defects report. These parts should of course then be made
available as quickly as possible. Missing parts in the test environment will have a delaying
effect and have an impact on the entire project. The Execution phase is often on the
critical path, and if it cannoft start (because for example the test environment is not
functioning). the entire project will be delayed. The intake should not be underestimated,
and should be carried out as quickly as possible. The intake of the test environment is
preferably carried out during the Specification phase. If this is not possible, then it should
be done at the start of the Execution phase, at the latest. This may be the case if the test
object is required and is only available af that fime.

Products

Defects

Operational and usable workplace
Operational and usable test environment
Operational and usable test tool

Intake report

Techniques
Not applicable.

Tools

Testware management tool
Defect management tool.

4345 Maintaining the infrastructure

Aim
To keep the infrastructure (test environment, test tools and workplaces) available for the
testers at a consistent level of quality.

Workplace method of operation

Maintaining the workplace, so that it is and remains available to the testers, is usually an
activity that is organized as standard within other maintenance activities in an
organization. As regards the PC in the workplace, it is important that the usual

269



maintenance organizations know that this is specially infended for the testers, since it can
mean that other agreements apply concerning, for example, authorizations and
prioritization in problem solving.

Test tool method of operation

The test tool can be maintained within the test project by the testers who use if, but also by
a separate maintfenance department (e.g. a permanent test organization). An important
maintenance element is the regular checking for new versions of the test tool and then
providing this to the users. Besides this, the management activities apply as described for
the test environment and for the test tool.

Test environment method of operation

The supply of the test environment on an ongoing basis, so that the testers are able to
carry out their test cases and analyze their findings, covers a range of activities. These take
place during the Execution phase. Examples of these are:

« Solving bofttlenecks

* Provision for logging

* Backup and restore

* Implementing changes

*  Monitoring.

Solving bottlenecks

The execution of test scripts may be delayed if problems occurin the test environment
(e.g.: a batch program has not run). Since the execution of test scripfts is often on the
critical path of a project, it is important to give the highest priority to solving these
bottlenecks.

Example

At a government institution, a project has a fixed deadline because the solution is related
to a change in legislation that is to be implemented by a certain date. The Execution
phase is on the critical path of this project and it is therefore in everyone'’s interest that this
phase is not delayed. In consultation with the maintenance department, it is therefore
agreed that the infrastructure that the testers use will be given a so-called “production”
status. This means that the management department deals with bottlenecks experienced
by the testers with the same priority as if it concerned the production environment. This is
justified by the fact that, should the project not be completed on time, the legislation
could not be implemented and so the primary process could no longer proceed. This
separate status only applies during the test execution.

Provision for logging

Systems can provide information in the form of logging, which can be used in retrospect to
check the actions that have been carried out. The logging is an important source of
information for testers in the analysis of their findings. The provision of this information is
therefore also an important activity. It may be decided to make it available on request,
but another (less labor-intensive) variant is to give the testers themselves access to the

logging.

Backup and restore

Particularly in respect of infrastructure used by testers, it is important to secure the data by
means of regular backups. This may be for the purpose of securing starting situations and
using them repeatedly for the test, but also of investigating particular defects. This

270



concerns not only backups of the test environment, but also of test tools and the PCsin
the workplace.

Tip

Always test the backup and restore procedure before the test starts. The way to do this is
to is to restore the backup immediately the first time it is created. This way the backup
procedure and restore procedure are tested.

Implementing changes

During the project, the test environment is subject to changes owing to all kinds of internal
and external causes, for example:
* Phased delivery and changes in the test environment
« Delivery orredelivery of (parts of) the test object
 New or changed procedures
« Changes in the simulation and system software
« Changesin the equipment, protocols, parameters, et cetera
« New or changed test tools
« Changes in the test files, tables, etc.:
- Conversion of test input files to a new format
- Reorganization of test files
- Changes in nomenclature

Changes in the test environment should only be implemented following permission from
the test management. Depending on the nature and size of the change, this will be made
known generally to the test team. A new intake will then take place in the test
environment.

Tip

A pitfall in the planning is to assume that the installation of a new version of the test object
takes no time. In a particular project, the first couple of versions took weeks because of the
great complexity and instability of the entire test environment and test object. Later, this
was optimized and subsequently never took more than a few days each fime.

Monitoring

The situation can occasionally arise in which a defect requires further research and
deeper technical knowledge than the tester has at his disposal. Assistance can be called
upon and he can ‘help to look’ at a technical level (monitoring) at what happens in
conjunction with certain actions.

Products

Operational and maintained test infrastructure
Defects test infrastructure

Techniques
Not applicable.

Tools
Not applicable.

271



43.4.6 Preserving the infrastructure

Aim
The aim of this activity is the identification, updating and transferring of the infrastructure

under maintenance, in such a way that it can be used again in future (re)tests. This activity
is optional.

Method of operation

This activity starts simultaneously with the Completion phase and covers the following
subactivities:

» Selecting the infrastructure

+ Collecting and refining the infrastructure

« Transferring the infrastructure.

Selecting the infrastructure

In consultation with the future maintenance department of the infrastructure, an inventory
is drawn up of which parts are now actually used (the configuration) and what is ‘worth’
transferring. The decision should be made based on the consideration of what it costs to
keep and maintain the infrastructure, and what it would cost to realize the infrastructure
again at a later stage. Besides this, there is the possibility that certain software or hardware
(such as parts of the test environment, but also certain test tools) are only of use during the
initial phase of the testing and are no longer necessary. It is then a waste of effort taking
this under maintenance. This identification can also clarify the difference between the
specified infrastructure and the infrastructure actually used. There can be discrepancies
here (certain software or hardware that was set up but never used) and this point of
learning can be taken forward into the evaluation of the test process.

Collecting and refining the infrastructure

The description of the infrastructure in the “Detailed specification of the infrastructure”
should be adapted to the configuration that is to be transferred. This is of essential
importance, as otherwise everything will have to be created anew for future tests. It is
important with this description to look carefully at the configuration of the workplaces. In
this “Detailed specification of the infrastructure” a list is included containing the
components that are transferred. Components may be licenses, environment data, scripfs,
software, tools, registry files, hardware, accounts, databases, files, etc.

Transferring the infrastructure

Finally, the actual transfer of the infrastructure takes place. The configuration is transferred
according to the adapted list in the document “Detailed specification of the
infrastructure™”.

Products
Preserved test infrastructure

Techniques
Not applicable.

Tools
Not applicable.

272



4.3.5 Preparation phase

Aim
To obtain, with the client’s agreement, a test basis that is of sufficient quality for designing

the test cases. In order to determine this, a testability review of the test basis is carried out
during this phase, which will provide insight into the testability of the system.

Definition

Testability is the ease and speed with which characteristics of the system can be tested
(following each adjustment).

Early defect detection

There is another reason for assessing or evaluating the test basis, apart from establishing its
testability. Evaluation activities can reveal potentially expensive defects at an early stage
of the development and test processes. The test basis forms the blueprint for the new
system to be built. Anything that is not mentioned in the test basis is left to the
development tfeam to solve. The development team goes to work on developing the new
information system on the basis of the system documentation, which may contain
mistakes. If these are not found in fime, it can lead to a lot of (often expensive) corrective
work. The sooner a mistake is found in a development process, the simpler (and cheaper)
it can be reworked [Boehm, 1981]. If, for example, a defect in a specification or
requirement is not discovered until the execution of the acceptance fest, the reworking
costs are high. Not only must the software be amended, but also, for example, the
technical and functional designs. In general, it appears that early defect detection makes
savings of 50%-80% possible.

By assessing the test basis and detecting defects early, the quality of the test basis will
increase.

Practical example

In the real-world examples below the testability review was carried out as an activity of

evaluation:

* Asupplier of packages has achieved a return-on-investment of 10:1 through early
testing of the designs. Because of this, €21.4 million is saved annually on project costs,
and the average time-to-market has been reduced by 1.8 months.

e A company in the telecommunications sector avoids 33 hours of reworking per defect
by evaluating the code.

« Alarge computer manufacturer saves 20 hours of test effort and 82 hours of reworking
for every hour spent on inspections.

A multinational in the chemical sector spends 10 times less maintenance money on
400 inspected software products than on 400 non-inspected software products.

Context

While both the (definition of the) test basis and the agreed test strategy are specified in
the test plan, the test basis is offen not yet available at the time of creating the test plan. In
the Preparation phase, it has to be investigated whether the test basis delivered
corresponds with, and is usable for, the previously established agreements in the plan. If
this does not appear to be the case, it may be necessary to adjust the plan, which can
have both a negative and a positive influence on one or all of the money, time and
quality aspects.

273




Negative influences are, for example:

« the lack of a definitive test basis

« a qualitatively inadequate test basis

» a test basis with more complex algorithms than expected.

Positive influences are, for example:
+ a test basis with less complex algorithms than expected
e atfest basis that anticipates the making of logical test cases (see tip).

Amending the plan is an activity from the “Control phase” and is further explained in that
section.

Tip

A government organization decided to have the designers supplement the functional
design with decision tables. The idea behind this was that the designers themselves knew
the intention of the design better than the testers, who had to create the (logical) test
cases based on the design. Since the testers were thus given a ‘head start’ and needed to
investigate less, the organization reduced the amount of time by 25% in the Specification
phase.

Preconditions

The Preparation phase starts as early as possible following the consolidation of the fest
plan and after the consolidated test basis is made available (see “In more detail”).

In more detail

The test basis is consolidated when the client indicates that enough activities have been
carried out that guarantee the quality of the specifications and other information.
Consolidation of the specifications is of great importance, since they form the basis for
both the testers and the developers and may subsequently only be changed by means of
formal change procedures.

While, in principle, only the client may consolidate the test basis, situations are
conceivable in which the test manager considers proceeding as though a fest basis has
been consolidated. For example, because the test manager doesn't want to hinder the
progress of the test, or if testers are in danger of ‘being freed up'. In making such a
decision, it is important to make clear agreements on this with the client. There is a good
chance that the test basis will change, with the possible consequence that previously
created test designs have to be amended. This can lead to exira costs and extension of
the timeline. It should be established in the agreements with the client how this is o be
dealt with, so that there is no need for discussion in retrospect.

Method of operation

Once the test basis has been put at the disposal of the test team, a start is made on its
testability review. It is first examined whether the summarized information, of which the test
basis consists, is still correct. If necessary, it is brought up to date in consultation with the
client. During this examination, it may appear that all of the information is not yet available
for the tester, or perhaps will not be arriving at all. In such a situation, a way must be found
of obtaining the missing information.

When the test basis is clear, this is assessed from the testing perspective for e.g.
consistency, understandability and completeness. Subsequently, on the basis of checklists,
an assessment is made as to the extent to which the established test strategy and

274



associated fest (design) techniques are applicable. The conclusions are documented in a
testability review report and discussed with the client. The results of this report may give rise
to adjustments to the test basis, the test strategy and the test techniques to be employed.

Tip

Synergy between evaluation and development / testing process

In some organizations, design specifications are structurally evaluated before a
subsequent development phase is started. By making the various points of focus from the
Preparation phase part of such an evaluation, a satisfactory degree of synergy is created
between the structural evaluation and the test activities from the Preparation phase. In this
situation, one or more members of the test feam participate in the evaluation process.
They take responsibility for the aspect of testability in relation to the design specifications.
The testers can also take the initiative of infroducing a structural evaluation process
(requirements being, for example, set out in a SMARTé framework), using evaluation
techniques as described in section 4.12 “Evaluation techniques”. Evaluation then
becomes an integral part of the method of operation. In the execution of the evaluation
activities, use can of course be made of the various checklists as described in the activity
“Creating checklists".

Roles / responsibilities

The testability review report is created by the test manager or test coordinator. All the
other activities can be carried out by any of the test team members. The report is intended
for the commissioner of the test (the client).

Activities

The Preparation phase consists of the following activities:
1. Collection of the test basis

2. Creating checklists

3. Assessing the test basis

4. Creating the testability review report.

The diagram below depicts the sequence and dependencies between the various
activities:

Con HOHEHEHTH o )

Figure 52. Preparation phase

6 SMART: S=Specific, M=Measurable, A=Achievable, R=Realistic, T=Time-bound
275



4.3.5.1 Collection of the test basis

Aim
The collection of, the definitive, if necessary overhauled, test basis is established in
consultation with the client.

Method of operation

The definition of the relevant information for the execution of the test is in principle already
established in the test plan (e.g. functional and technical designs, requirements, use cases,
user manuals, interview reports, prototype, and reference system). However, it is possible
that, in respect of the exit information, changes have taken place. The test plan should
then be amended and the identification of the information reviewed. Finally, the various
parts of the test basis are actually collected. Eventually, of course, the test team should
have the correct (version of the) test basis at its disposal.

A point to bearin mind here is that the test basis does not always have to be present,
complete, up to date, or established in documentation. A test basis often appears to be
incomplete because, for example, non-functional requirements have not been specified,
while they are nevertheless considered to be risk-related. By alerting the project to this, a
(timely) trigger is created for bringing it fo attention.

Alternative test basis

If fest-basis problems do indeed arise, some solutions obtained from practice for obtaining

an alternative test basis are listed below:

« Present system in production as reference system
Supposing the system documentation is missing, obsolete orincomplete in a conversion
or migration project, for example. The creating, supplementing or updating of this
documentation normally does not belong within the scope of the project. In such a
sifuation, the present production version of the system is used as test basis. This is
particularly good alternative in situations that involve few or no changes to the
functional operation of the system, or if the changes are well documented.

« Prototype as test basis
In asituation that does not accord high priority to the production of system documents,
which are possibly only to be delivered at the end of the project, a prototype is
sometimes made. This occurs, for example, with Rapid Application Development or
variant of this (including SP, DSDM and RUP). Since the prototype is often made in co-
operation with the user, this can also be used as the test basis.

e Information session
During, for example, maintenance operations, it often appears that neither the system
in production nor the changes to it have been well documented. The organization of
information sessions for everyone involved (developers, designers, users, administrators,
etc.) is a good way of clarifying both the operation of particular system parts and the
changes to be implemented. The information obtained during such a session can be
used as a fest basis.

« System documentation from the last-but-one iteration as a test basis
With iterative and incremental system development approaches, there is a possibility
that the system documentation will only become available to the tester at a later
stage. In a situation where it is not permissible to change the system documentation
during the last iteration, the test basis is made available to the tester at the end of the
last-but-one iteration. In the situation where it is permissible to change the system
documentation during the last iteration, it may be considered whether to use the
system documentation from the last-but-one iteration as the test basis (often more than

276



80% ready). At the end of the last iteration, the — often small - changes to the system
documentation have to be processed in the test cases by the tester.

An important point in connection with the above means of obtaining an alternative test
basis is that this is seen by the client (and any other stakeholders) as the test basis.
However, a test basis obtained in this manner will seldom be approved or consolidated. It
is therefore important for the client and the tester to be aware of the risks that this involves.
It is advisable not only to inventory these risks, but also to establish the associated
countermeasures. For example, who has the ‘deciding vote' if it appears that the realized
functionality of a (sub)system differs from expectations based on the alternative test basise

Occasionally, so little information is present that even establishing an alternative test basis
is impossible. In such a situation, other sources of information may be resorted to, and while
they cannot be used as an alternative test basis, they are perfectly usable for, for
example, deriving logical test cases (see tips on “Absence of test basis”).

Tips

Absence of test basis
If no test basis is present, the tester should go in search of other sources of information that
can serve as a basis for creating test cases. Bach, Whittaker and Kaner have devised an
approach for this:
e HICCUPP [Bach, 2003]
Information for creating test cases may be obtained, for example, from norms and
standards, memos, user manuals, interviews, advertisements or rival products. Bach has
set this out in his HICCUPP approach:
History. Is the present operation of the software consistent with the previous operation?
Image. Is the operation of the software consistent with the image of the organization?
Comparable. Is the operation of the software consistent with that of other comparable
products?
Claims. Is the operation of the software consistent with how people say it should
operate?
User expectations. Is the operation of the software consistent with what we (the testers)
think the user wants?
Product. Is the operation of specific software components consistent with comparable
software components within the product?
Purpose. Is the operation of the software consistent with the apparent aim of the
software?

« 18 Aftacks, by Whittaker and Jorgenson [Whittaker, 2000]
Some software defects are so frivial that good standard tests (attacks) can be defined
for them. The 18 attacks of Whittaker and Jorgenson listed below can form an excellent
basis for creating tests or be used to supplement existing tests:
User interface (input)
1. Generate input that will provoke all the error messages.

. Generate input that will require all the default values to be entered.

. Try to enter all the permitted symbols and data types.

. Enter foo many symbols.

. Find correlations between input fields and test combinations of their values.

. Enter the same data repeatedly.

ser interface (output)

. Try every possible output for every input.

. Try to cause incorrect output.

. Try to change characteristics/values of the output.

277

2
3
4
5
6
u
7
8
9



10. Refresh the screen.

Stored data

11. Enter data from every possible starting point.

12. Try to save too many or too few characters in the database.

13. Try to find alternative ways of changing internal data restrictions.
Calculations

14. Try out incorrect operand and operator combinations.

15. Try to get a calculation module to invoke itself.

16. Try to make the resulting values too high or too low.

17. Try to find functions that make use of the same data.

System interface (media)

18a. Make all the storage space unavailable.

18b. Make the system busy or unavailable.

18c. Damage the system.

System interface (files)

18d. Allocate an incorrect file name.

18e. Change the permissions (including reading and writing permissions) of a file.
18f. Change the content of a file, or corrupt it.

e Kaner's 480 bugs [Kaner, 1999]
Kaner has created a list of common software defects. This list can be used to find the
same or similar defects in the software under test. Alternatively, the list can be used in a
more general sense for:
Gathering test ideas
Investigate whether a defect on the list could arise in the software under test. If this is
theoretically possible, consider how you might find it. Then create test cases (or not)
depending on the damage the defect could cause in production.
Test design review
Select a few test situations from the test design and find a possible defect from the list
for each test situation. Then examine, for each possible defect, whether it could occur
in the software under test and whether it would then be found by the test cases
created.
Wider perspective
Check the list for types of defects that are often overlooked (out-of-the-box thinking).
Training
Show new testers what can go wrong and have them create test cases with which
these defects can be found.

When using one or more of the approaches mentioned with a view to arriving at an
alternative test basis, or a basis for deriving test cases, the tester would do well to bearin
mind that it is not the tester’s job to create the test basis. The tester assesses and uses the
test basis exclusively for testing purposes. The creation of system documents was, is and
remains the responsibility of e.g. the project or the development department. The tester
should avoid sitting in the place of the designer. This means that the test basis that is
obtained from one of the above-mentioned approaches should always be agreed with all
the stakeholders, on the one hand to confirm the way the system should function and/or
be built, and on the other hand to confirm agreement that this is indeed the alternative
test basis against which testing is to be carried out, or the basis from which test cases
should be derived.

Products
Consolidated test basis.

278



Techniques

HICCUPP [Bach, 2003].
18 Attacks by Whittaker and Jorgenson [Whittaker, 2000].
Kaner's 480 Bugs [Kaner, 1999].

Tools
Not applicable.

279



4.3.5.2 Creating checklists

Aim
The checklists are created, on the basis of the test strategy laid down in the test plan, for

the various part objects/characteristics under test. These checklists form a guide in
assessing the test basis.

Method of operation

With the aid of checklists, the test basis is checked for testability. During this activity, the
checklists needed for the testing are created. Depending on the selected test design
techniques, test types, information sources that determine the test basis and the part
objects/characteristics under test, one or more checklists should be created (see also the
tip “Test design techniques in the absence of a test basis” below). Each checklist should
indicate which specific verification aspects play a role in the testability review. If you wish
to avoid duplicating work on identical parts of the test basis during the evaluation, the
separate checklists could be consolidated into one checklist. In creating the checklist, use
could be made of the general checklist of “test design techniques”, to be found at

www.tmap.net.

Partly owing to the diversity of test design techniques and information sources that
determine the test basis, it is not possible to create one general checklist per part
object/characteristic. Therefore, checklists should be created specific to the situation per
organization and per project. It is advisable always to create a checklist, as in practice it
often appears that too much attention is paid to the use of standards and correct spelling,
or even to these aspects alone. This can be a cause of friction among the various people
involved.

Tip

Test design techniques in the absence of a test basis

The fest plan contains, among other things, a summary of the information of which the test
basis consists, as well as the test strategy. However, if it appears that the agreed
(documented) test basis is partly or entirely lacking, it may be that the testing has to be
carried out on the basis of different (non-documented) information. In that case, not alll
the test design techniques are suitable.

Some coverage types and test design techniques that are often suitable in such a
situation are:

Data combination test

Error guessing

Exploratory testing

Boundary value analysis

e Checklist based.

For notes on these coverage types and test design techniques and the use of them, refer
to chapter 3 "Website™.

Products
Various checklists or one consolidated checklist for assessing the test basis.

Techniques
Checklist “Test design fechniques” (www.tmap.net).

280



Tools
Not applicable.

281



43.5.3 Assessing the test basis

Aim
To establish the testability of the test basis. Testability here means completeness,
consistency, accessibility and translatability into test cases.

Method of operation

The test basis is assessed using evaluation techniques and the previously created
checklist(s) to obtain insight intfo the applicability of the established test strategy and
related test design techniques. If it appears that the test basis falls short, it is of course
important to report this to the supplier of the test basis via the client as quickly as possible.
This party can then take responsibility for clarifying and/or filling in the gaps. The registration
and flagging of these defects in the test basis take place by means of the procedures
established in the activity "Organizing the management”.

Products
Test basis defects.

Techniques

Checklist for assessing the test basis (product from "Creating checklists”).
Evaluation techniques.

Tools
Defect management tool.

282



4354 Creating the testability review report

Aim

The testability review report:

« provides feedback on the quality of the test basis and its impact on the planned test
programme

« discusses the weak spots in the system design timely

e obtains information on project risks.

Method of operation

A testability review report is created based on the individual test basis defects. This report
supplies a general summary in respect of the quality, or testability, of the test basis. Any
consequences of inadequate quality should also be described. Discrepancies in respect
of the summarized information in the test plan of which the test basis consists and the
agreed test strategy are also described. This can give rise to adjustment to the plan in
connection with, for example, the strategy to be followed and the test techniques to be
employed. For further explanation of this, refer to the “Conftrol phase”.

The testability review report could consist of, for example, the following sections:

¢ Formulation of the assignment
An identification of the original (or, if necessary, amended) test basis and a description
of the client and the contractor.

e Conclusion
The final conclusion in respect of the testability of the examined test basis and any
related consequences or risks: is the test basis of sufficient quality to justify starting on
specifying tests as established in the (amended) test strategy?

¢ Recommendations
Recommendations in respect of the assessed test basis and any structural
recommendations with an eye o producing a better test basis in the future.

e Defects
The defects found are described in detail or reference is made to the associated
defects forms.

* Appendices
The checklists used.

Products
Testability review report.

Techniques
Not applicable.

Tools
Not applicable.

4.3.6 Specification phase

Aim
During the Specification phase, the required tests and starting points are specified. The

aim is to have as much as possible prepared, in order to be able to run the test as quickly
as possible when the developers deliver the test object.

283



Context

This phase begins when the testability review has been carried out on the test basis and
the defects in it have been processed as far as possible. The test specification runs in
parallel with the completion of the software (or parameterization, in the case of
packages). The software is the primary product of the development process and is usually
also on the crifical path of the process. The focus of the (project) management is
therefore upon this. The test specification is only of indirect interest, but this changes at the
point when the software is transferred for the test execution and the attention of the
(project) management is then drawn to it. The test team has to be ready then to start the
test execution. The test specification is aimed at preparing as much as possible so that the
test execution can be performed as fast as possible and be on the critical path for as short
a period as possible.

The test manager has to be aware of this. He should translate, as far as possible, the signals
given by the test specification problems into consequences (in terms of time, finance and
quality) for future test execution and the fotal productive process.

Preconditions

The following preconditions should be met before the Specification phase can be started:
« The test basis is available and placed under configuration management
+ Defects from the testability review have been processed.

Method of operation

During the Specification phase, the testers specify the required tests per test unit. This is
done by creating checklists or specifying test cases on the basis of the allocated test
approaches, coverage types and/or test design techniques. When specifying fest cases,
the testers also create test scripts, in which the test cases are put into an efficiently
executable sequence. On this basis, and partly in parallel with it, the testers define one or
more cenftral starting points for the testing that the test cases can use. This may be a copy
of production or a central base table listing. A special form of a test to be specified is the
test object intake. This fest should check in the Execution phase whether the fest object is
sufficiently testable for a meaningful and efficient test execution.

Roles/responsibilities
The activities in the Specification phase are carried out by the testers.

Activities

Within the Specification phase, the following activities are distinguished:
1. Creating test specifications

2. Defining central starting point(s)

3. Specifying the test object intake.

The diagram below shows the sequence and the dependencies between the various
activities. Activities 1 and 2 run in parallel, but mutually influence each other.

Figure 53. Specification Phase

284



4.3.6.1 Creating test specifications

Aim
The creation of the test specifications per test unit.

Method of operation

The testers specify the necessary tests for the test units in the test plan. After completion,
the test specifications are placed under configuration management.

Definition

A test unitis a collection of processes, tfransactions and/or functions that are tested
collectively.

Depending on the test variety and test approach, coverage type and/or test technique
selected for the test unit, this activity may consist of anything from the creation of a
checklist to the design and specification of test cases according to a coverage type
and/or test design technique or to the design of a test with other techniques. The
possibilities are further explained below. Explanations are also given of a scalable
regression test and of the relationship between this phase and exploratory testing.

In the course of this activity, problems may arise with the fest basis. Roughly, these can be

categorized as follows:

e Defects
As with the testability review, the testers may find shortcomings and/or ambiguities in
the test basis. The testers create a defect report on this. Via the defects procedure, it is
passed fo the test basis supplier, who can then solve it

¢ Absence of test basis
If the testability review has been insufficiently executed, it may only appear aft this
stage that certain parts of the test basis are missing or not detailed enough, so that
they are not, or not sufficiently, testable. The same types of measures as adopted with
the testability review may be considered; see the section on “Preparation Phase”.

Tip

With iterative or agile system development, the test basis is oftfen not 100% complete at
the start of the iteration, but is completed during the iteration. Besides the above-
mentioned measures, it is advisable to carry out a minimal testability review with each
addition to the test basis before specifying tests based on the addition.

¢ Unstable test basis
If the supplier of the test basis makes regular changes fo it, for example because of
defects or change proposals, this makes for an unstable test basis. With every change,
the testers have to examine the relevant test specifications to see whether adjustments
are necessary. These reworking operations are always difficult o estimate in advance.
The test manager is well advised to arrange a certain level of reserve budget and time
for this when creating the test plan. If these are exceeded, the project management
should be notified that more time and finances are required (see also section 6.3
“Conftrol Phase”). Other possible measures are to defer the specifying of the tests for
the unstable parts in the plan or to create the logical test cases, but to delay the
physical makeup of them untfil the test basis is (more) stable.

285




Test design techniques

For the creation of the test cases test design techniques can be used. In Chapter 3 test
design is explained in great detail.

Checklists

Besides the specifying of test cases, many tests take place with the aid of checklists. These
are used with simple functional tests, but also for the evaluation of e.g. maintainability,
manageability, user-friendliness or security. While a checklist is usually specific to the
situation, testers often use a general checklist as a basis and make specific adjustments to
this. The general checklists may be supplied from within the organization (by the test
department) or from the literature or via the Internet. Various examples of checklists for
testing certain quality characteristics can be found at www.tmap.net. The creation (and
execution) of a checklist requires a competent tester with the necessary knowledge of the
object part or characteristic under test. It is therefore advisable to have the checklist
reviewed.

Other techniques

Apart from the specifying of fest cases according to test design techniques and the
creation of checklists, other techniques are possible that do not fall into either of the
above categories. These techniques mainly apply to the testing of quality characteristics,
such as portability, usability, performance and security.

Constructing and managing scalable regression tests
In more detail

In practice, regression tests are often inadequately set up. In this section, an approach is

described for the constructing, using and managing of regression tests based on the Test

Cube principle [Test Cube, 2006]. In this, connected principles are described, which make

it possible to:

o Specify test cases and execute them based on priorities

* Report quickly and adequately on the progress of test specification and/or test
execution

* Plan and estimate tests accurately

* Create fast and variable regression tests

* Process changes in the test object easily into the test.

The principle behind the Test Cube is that, per test case, a collection of supplementary
data is established: the test cases within the test are ‘classified’. With the aid of these
classifications, selections can be made through all kinds of cross-sectioned subsets of test
cases from the entire fest.

Examples of classifications are:

e Application

e Object part

¢ Function

¢ Risk category

*  Process (part)

e Release

¢ Requirement

e Transaction

e Testintensity.

The right selection of classifications and the correct classification of the test cases will
determine the usability of this concept. Essential in this is the classification according to test
286



intensity. This classification indicates the ‘weight’ of the test case in the test and makes it

possible to create a risk-based regression test of variable test intensity.

The application of these test intensity categories in the creation of regression tests is as

follows (using three categories):

e By only selecting the test cases of an object part from category 1, a small regression
test is created. This subset is used for an object part to which no amendments have
been made (or for a pretest on a new or radically changed object part)

e The test cases from category 2 (includes category 1) deliver a normal regression fest, for
example for an object part in which amendments have been made

e The test cases from category 3 (includes categories 1 and 2) cover the entire object
part and are applied to the new or radically changed object parts.

No requirements are set as regards the degree of detail in which the test cases are
specified. If test cases are expected to be executed by testers who have no domain
knowledge, the test cases should be written in more detail.

The concept only sets one specific requirement of its own in respect of the test cases, and
that is that they should be independent of each other, as described for the creation of the
physical test cases. This is the so-called independence principle of the concept. It should
also be possible to execute the test cases in parallel with each other. Test cases that
require exclusive use of the test environment for a specific period hamper the execution of
other test cases. This in furn hampers the plans for the timeframe of the testing process.

Application of this concept facilitates measurement of the size of the (regression) test and
associated activities in the test process.

As with the testware in general, careful consideration should be given here to when, how
and by whom this test can be kept current.

For further explanation, refer to the relevant white paper [TestCube, 2006].

Session-based exploratory testing
In more detail

Exploratory testing (ET) is actually not purely a test design technique. With ET, the tester
makes decisions during the test execution as to which test he is going to execute. He
designs a test on the spoft, using his knowledge of test design techniques, without
documenting them. As such, ET has no place in the Specification phase, since everything
takes place during test execution. The reason we are paying attention fo it here is that, in
order to make ET more manageable, it is often organized in the form of sessions with clear
test goals that can be completed in a few hours. These test goals are known as test
charters. While the list of test charters is dynamic, the testers are well advised to compile
an inifial list of test charters prior to the Execution phase.

Products

Test basis defects
Test specifications (checklists, test cases, test scripfs).

Techniques
Approaches, coverage types and test design techniques (chapter 3)

287



Checklists for various quality characteristics, www.tmap.net

Tools

Defect management tool

Test design fool

Model-based testing tool

Testware management tool
Automated test execution tool
Performance, load and stress test tool.

288



4.3.6.2 Defining central starting poini(s)

Aim
The defining of one or more central starting points from which the testers can obtain data
for their test specifications.

Method of operation

A good starting point is of essential importance for the sake of being able to (re)test. This
will contain everything necessary to prepare the test object and the test environment
before starting with the test cases in the test script. This involves not only the test data
required for the processing, but also the condition in which the system and its environment
should be. It relates to, for example, the setting of a certain system date or the running of
certain weekly and monthly batches that put the system into a particular condition.

In practice, incorrect starting points appear to be a significant source of problems for the
testing. To avoid testing using the wrong starting points during the test execution, it should
be considered at an early stage how these are to be constructed and which process is to
be employed in using them. If this is not done, the following problems may arise:
* Non-reproducible test results
If a test script is executed twice on the same version of the test object and the
results vary, this may be the result of divergent test data in the starting point. Extra
data may have been added to or removed from the starting point for other tests.
e Deteriorating starting point
During the test execution, test data are used and amended. New data come into
the system; existing data are amended or perhaps even removed. If no process
exists to manage the starting point, nothing is known regarding its quality.
« Testing gets increasingly expensive
If the starting point is of poor quality and is not documented anywhere, the testers
are obliged to make increasing efforts (in seeking or creating test data) for the
execution of the test cases. Moreover, the risk of mistakes on the part of the tester
increases. This will increase further in time, as the starting point becomes
increasingly less well known and therefore poorer.
« Insufficient information on defects causes delay
The starting point takes an important place in the reporting of a defect. It clarifies a
defect. If this starting point is not known during the analysis of the defect, delay will
result. Developers themselves have to go in search of the original starting point or
have to ask the tester for clarification.

In the test specifications, the necessary starting point is specified per test script. To avoid
redundancy and to restrict the number of physical files needed, one or more central
starting points are defined that the testers can use in the creation of their test cases.

The creation of cenftral starting points can take place in parallel with the setting up of the
test specifications and is often an iterative process. Often, a tester will start with a central
starting point by, for example, proposing the contents of master files. Master files are data
that drive the system, but are not part of the primary data processing. Examples are
discount tables, tax percentages, postcode tables, product types and customer types. A
subsequent step may be to propose an initial content of primary data, e.g. a number of
customers, products, orders and invoices. It may be decided to define several central
starting points, if this appears to be useful in specifying the tests. The difference may be the
type of data, e.g. the one cenfral starting point with all kinds of variations in customers,
and the other with all kinds of variations in orders. Another possibility is a difference in time.

289



For example, a central starting point could be defined just before the year’s end and just
before disbursement of holiday pay, since these are significant testing points.

In addition, all kinds of starting points emerge in the creation of the test specifications,
usually one per test script. The tester who manages the central starting point will consult on
this with the tester of the starting point of the script as regards which data are suitable for
adding to the central starting point. In this, the following criteria, for example, could be
used:
« Can other testers reuse (part of) the starting point of the test scripte
« Does the starting point of the script conflict with the (consistency of) the central
starting pointe
» Canincluding the starting point of the script in the central starting point disrupt
other testse
« Willincluding the starting point of the script in the central starting point lead to
efficiency benefits in the execution of the script?

There are various possibilities for loading the central starting point with test data. These are
described later in the book.

The description of the central starting points is created in accordance with the established
norms and standards for testware and taken under configuration management after
completion.

Naming test data

A point of focus when creating your own physical test data is the business of naming. It
may be decided to name the data similar to those in production. In that case, realistic
(although fictional) names are given to e.g. test customers, test addresses, test codes, test
products, efc.

It may also be decided to give the data a name that is relevant to the test, for example
by including the test-case number, test unit, object part or test goal in the name. This will
also help with the solving of defects and fransfer to other testers.

The third option is to generate meaningless names. For the foregoing example of test
customers, then, these would be:

« Personl
« Person2
* Person3
 Person4
 FEtc.

This last option saves time in searching for and creating realistic or test-related names, but
also involves arisk. It may cause a certain functionality or other characteristic of the
system fo respond differently. Examples are the operation of the sorting algorithm (which is
now fairly simple and therefore cannot be extensively tested), long names of individuals or
letters with accents. Another example is performance. On a table with 1,000 fictitious
names that are numbered consecutively, the database management system might treat
them differently from a table with 1,000 fictional names. The so-called index on a table
may be differently constituted, which may be detrimental to performance.

Entering test data

There is a choice of three possibilities for the entering of test data:
1. Entering through regular system functions
2. Entering through separate front-end software

290



3. Use of production data

1. Entering through regular system functions

Entering test data through regular system functions has the disadvantage that those
functions themselves have often not been exhaustively tested and that the data entered
therefore need to be thoroughly checked. The advantage is that during the accumulation
of the files, the regular functions are implicitly tested simultaneously and the consistency
between the data is guaranteed. A condition, however, is that the input functions need to
be delivered first. This should be agreed in advance with the supplier of the software.

2. Entering through separate front-end software

Entering test data through separate front-end software and test files has the risk that the
test environment will contain inconsistent or non-permitted situations, since there was no
check on the input. This means that technical support is required with the accumulation
and, of course, tested front-end software must be available. The advantage is that the files
can be accumulated relatively quickly.

In more detail
Working with 0 data, 0 scripts and 0 files

0 Data are test data that are initially required for the execution of the test. 0 Data can take
many forms. It can consist of, for example, persons with a name, address and other
features that are used in various test cases. It can also be the users who are permitted to
use the system (the testers). Another form again is the data in so-called master tables. It is
important to identify and describe the required 0 data in the specification of the test
cases.

0 Scripts are test scripts with which the 0 data is placed in the system. This takes place via
the regular system functions, with the advantage that the functions of the system
concerned are already being tested. An added advantage is the clarity of the starting
point/data (0 scripts are executed on an empty database). 0 Scripts are executed first,
and therefore, with the execution, the tester can gain an initial impression of the quality of
the test object.

A conditfion for working with 0 scripts is of course that the functions required for inputting 0
data are built first. If that is not the case, it may be decided to work with so-called 0 files.
These files contain the 0 data and can be read into the database direct via separate
front-end software (e.g. based on SQL).

3. Use of production data

The use of production data as test data has the advantage that testing can be done with
a lot of data, that the files can be built up quickly and that any conversion software is
tested implicitly. A disadvantage is that these data show little variation and it can mean a
lot of searching for the right variation in starting point data in a test case. Another
disadvantage is that it is not always permitted to work with production data (because of
privacy legislation or openness fo fraud). This makes it necessary to make identifying data
unrecognizable. In some cases, a production copy is not frozen for the test, but a new
copy is periodically placed in the test environment. The disadvantage of this is that the
tests are not directly repeatable, because the production data of each copy are different
each time, so that the test result predictions are no longer correct.

Tip

291



A variant on obtaining test data from production is to have test data supplied by users. No
one knows the system and associated data better than they do, including the ‘difficult’
cases. Ask each user for a number of difficult cases in the form of test data. This can be
done by having the user himself take his place behind the test object and input these
cases. Another possibility is to copy the specific cases from production and put them into
the test environment.

Aside from planning and budget difficulties, the first alternative, entering test data through
regular system functions, is preferable. If the test team has permission to obtain test files
from production, it is also possible to combine the three alternatives. Choose a collection
of production data that, for example, contain a particular type of information (customer,
order, invoice, etfc.). This subset is loaded into the test environment (retaining consistency
among the various data). Subsequently, with the aid of regular system functions, changes
are made to these data to create the desired starting point.

In more detail

Test data in data-warehouse testing

A data warehouse can be generally split into two groups of programes:

« The exiraction and conversion programs for filing the data warehouse

* The reporting programs for obtaining information from the data warehouse.

While it is preferable to use separate test data for testing individual extraction and
conversion programs, production data are inclined to be used with integral testing of the
reporting programs. The reason for this is that the creation of a consistent set of fictional
test data is demanding and with a set of production data, this consistency is almost
automatically guaranteed. Besides, a big advantage is that a user can assess the
outcome of a report more easily when using real production data.

Disadvantages of using production data in testing a data warehouse, however, are:

« The difficulty of making exact output predictions, since it is difficult to find out what
the input was

+ The confidentfiality associated with some data. In practice, this means that the use
of production data is not possible, or only after application of scrambling
techniques (depersonalization, making data unrecognizable)

+ The continually changing situation: the production data of today are different from
those of a week ago, which hampers retesting.

This last disadvantage can be helped by suspending the daily/weekly reloading of data,
so that the same starting point can always be used. An applied simplification is not taking
the entire production files, but a selection of them. However, this requires focus (and time)
for the mutual consistency of the data.

Delta test1
As an addition to this, the following procedure may be gone through:
+ Take asubset of production data and call this X
* Run subset X in its entirety through the data warehouse and record the results
* Now add to subset X a number of self-created test cases and call this set X+1.
e Run subset X+1, too, in its entirety through the data warehouse
« The results of X+1 can be predicted by adding to the results of X the same self-
created test cases
« Then add test cases to subset X+1 and call this X+2
* Run subset X+2 in its entirety through the data warehouse

292



+ The results of X+2 can be predicted by adding the self-created test cases to the
results of X+1 (this second run is useful for checking changes in time).

Delta test2
The following is a somewhat simpler variant of the above:
« Empty the database(s) of the delivering systems
« Put a number of self-specified test cases into these systems
* Run the extraction and check the result in the data warehouse
* Now put the same test cases as a kind of regression test intfo the full database(s) of
the delivering systems
* Run the extraction and check the result (of the test cases) in the data warehouse.

Example

For a test process in a big data warehouse, the following test files are used as test data:

« The small test seft: this is as small a test file as possible, with which the, possibly obvious,
functional problems in the use of the prototype are searched for effectively. This test
set is used as the first test after the development or reworking of the prototype and
with all the other tests to quickly obtain an impression

* The 1,000-records test file is used for the functional acceptance test and consists of
around 1,000 records from a daily file. The daily file that is used for this should concern
a day in which as many (problem-generating) different cases occur. The choice of this
is determined together with the client

* The 5% (or X%) test set is a representative sample compiled by the client from the
source files for the third increment

* The ‘daily files’ test set consists of a complete daily file. The daily file that is used for this
should concern a day in which as many (problem-generating) different cases as
possible occur. The choice of this is determined together with the client. The execution
of a weekly process in order to check whether starting status + mutations = final status
is an important point of focus here. Preliminary dates of Wednesday 1 March, Thursday
2 March and Friday 3 March are used, after which a weekly process is run to check
this.

Use of starting points during the test

The use of the central starting point during the test should be considered in advance. This
chiefly concerns the choice between:

1. The cumulative construction of the central starting point (unstructured or structured)
2. Periodic restore with the central starting point (master copy)

3. The parallel use of several versions

1) The cumulative construction of the cenftral starting point (unstructured or structured)
With cumulative construction, the central starting point grows along with the tests. If this is
done in an unstructured way, the testers input new test data as required. This gives the
testers much freedom and flexibility, but also has a disadvantage. A variety of testers input
their own test data, which can influence the test results of other tests. This can cause a lot
of wasted searching time in the analysis of test results. Besides, data will quickly become
inconsistent.

With the structured variant, the testers make agreements in order to prevent such
influences. For example, they may agree that only certain types of test data may be
entered or changed, or that test data should be identified so that it can be seen to which
tester they belong.

293



Example

For the testing of a mobile telephone subscription billing system, a test team of 5 persons
was involved. Each of these individuals was responsible for the testing of a specific
subsystem. In order to avoid the testers getting in each other’s way when using the cenfrall
starting point, it was proposed to link a range of telephone numbers to each subsystem.
The starting point of the test cases for a specific subsystem then had to fall within that
range. A range was also agreed for the integral test that ran across the various subsystems.
This resulted in the following division:

Subsystem 1: range of telephone numbers +31610000000 to +31619999999
Subsystem 2: range of telephone numbers +31620000000 to +31629999999
Subsystem 3: range of telephone numbers +31630000000 to +31639999999
Subsystem 4: range of telephone numbers +31640000000 to +31649999999
Subsystem 5: range of telephone numbers +31650000000 to +31659999999
Integral: range of telephone numbers +31690000000 to +31699999999

2) The periodic restore with the cenftral starting point (master copy)

A second approach is the regular restoring of the central starting point (also called the
‘master copy’). This is done via a backup-and-restore procedure. A backup is first made of
the master. At certain times, the administrator of the master restores it. That may be
periodically, for example every day of the week, but also on request, for example after the
execution of a test. A special management procedure can provide for the structurally
adding of test data to the master. A big advantage is the manageability of the data, but
disadvantages are the dependency of the restore point and the exira work to go from the
master to the starting point necessary for the test.

3) The parallel use of several versions

A third possibility is the use of several environments with parallel versions of the data. Each
tester has his own test environment and starting point(s). Having a central starfing point at
your disposal may remain useful, but each tester is able to amend it as he wishes in his own
environment. A big advantage of this approach is the independence of the tests:
disruption by other tests is barely possible, since the tester knows exactly what is in his own
starting point. That delivers great savings in fime. A disadvantage is that, because of the
isolation of the tests, faults in starting points can remain undetected for long periods and
integral fest aspects are only dealt with at a late stage. Another disadvantage is the exira
cost for the required test environments, both in ferms of hardware and of administration.
An important condition for this method of operation is good configuration management.
This should ensure that the software deliveries and follow-up deliveries in connection with
solved defects are rolled out to every test environment simultaneously. This could be a risk
factor.

In more detail

Test environments and test data within SAP®

The terminology of SAP speaks of a system landscape, containing the various
environments. A system landscape often consists of separate development, test,
acceptance and production environments (also known as DTAP). These environments are
called clients. There can be several clients per environment (instance) present. Several
clients ensure that the testers do not get in each other’'s way as regards test data. It is
advisable to set up a separate master client to secure the test data. Through copying,
these data can be placed in another client. SAP also has the Test Data Migration Server
tool, with which data from a productive environment can be reduced and if necessary
anonimized and transferred to non-productive environments.

294



The transferring of changes (customizing, new software) in SAP from one environment to
anotheris done by means of so-called transports (SAP Transport Management System).
Transporting can be client-dependent or client-independent. With tfransporting, it is
necessary to maintain a certain sequence and it is sometimes necessary to create certain
settings manually per environment. All of this requires very good configuration
management containing release or tfransport administration.

The figure below contains an schematic example of the environments and associated
fransports.

Production
P 40 020 P 40 999
P40
1. Production 1. Forms
2. Production data 2. Own data
A
//
//
Acceptance 7
A40 /,/ A 40 020 A 40 030 A 40 040 A 40 999
2 1. Master client 1. SIT, GAT, OPL 1. Project
p i, Forms
7 20 Copy of 20 Copy of 2. Copy of > No dat
/’ production production production : W ekl
l’ y. | P24
i /
\
\
\
AN
Test T 40 020 T 40 999
N
1. FIT 1. Forms
T40 N\
<| 2. Owndata 28 No data
N T
S | /
L
N
N -
Deve|opment 0 40 020 0 40 030 0O 40 040 0 40 999
040 1. Development 1. Development 1. Sand box 1. Forms
20 No data 2. Own data 2. Own data 2. No data

— » Client-dependent transport
________ » Client-independent transport

Figure 54. SAP environments and transports.

Test data with outsourcing

A development that is attracting the attention of various legislators is the handling of

electronic data during outsourcing. Two subjects warrant special attention here:

« Confidentfiality of the data used
Increasingly, it is being established in laws or formal guidelines how electronic personal
details should be dealt with and how to guarantee that such information remains
confidential. When test data are created from production databases, it is necessary in
cases of outsourcing that the data is made anonymous, since the data departs the
organization and sometimes the country. Cases are known of employees of the
supplier abusing software and data belonging to the outsourcing organization.

Tip
With anonimization, take care that all the data are anonimised in the same way, so
that they remain consistent with each other in a variety of files.

295



« Responsibility for supply of data
Another point of focus is the specifying of the test cases and the necessary 0 data. The
supplier sometimes has insufficient subject knowledge to create realistic values himself.
Extreme examples are: using postcode tables with a wrong number of numeric
positions or setting the VAT percentage at 100%. This can seriously disrupt the execution
of tests and also makes checking of the test results extremely difficult. If certain 0 data
are important to a good test, agreements should be made concerning who will deliver
them, and when.

Products

Test basis defects
A description of the central starting point(s)

Techniques
Not applicable.

Tools
Test data tool.

296



43.6.3 Specifying the test object intake

Aim
The preparation of the intake of the test object so that testing can start as soon as possible
after delivery of the test object.

Method of operation

This activity contains the following subactivities:
* Creating a checklist for the test object intake
» Creating a pre-test test script.

Creating a checklist for the test object intake

At a certain point, the test team takes delivery of the test object. This first activity has the
aim of establishing whether the delivery of the test object is complete, i.e. that it contains
what was agreed with the supplier of the test object - no more and no less.

The test object usually consists of all kinds of software components (each with a particular
version), but a user manual and installation guide, too, for example, may be part of it. The
tester documents in the checklist which parts are expected with the delivery.

Besides information on the test object itself, the checklist also contains questions on the
delivery information. It should be apparent which changes the delivery contains and
which parts are related to which change. This prevents the test team from receiving
changed software parts, while they have no change proposal and therefore no test
planned for if.

In more detail

This occurs with specialist packages, in particular, because the supplier implements the
change proposals of a number of customers simultaneously, but only provides feedback
to each customer individually concerning the changes requested by them.

Creating a pre-test test script

After installation of the test object, a pre-test takes place in order to determine whether
the test object is good enough to start festing. In this activity, the testers prepare this pre-
test by creating a test script. This can involve several degrees of thoroughness. Below are a
few examples:
« Checklist with all the functions, which should all be accessible
« For a number of representative functions, a simple test case with valid input (*good
case”) is specified
+ Specification of test cases solely aimed at integration to check that the various
parts can communicate with each other. The data-cycle test is a good choice for
this.
The test cases may be obtained from the regular tests, but the results check is much more
flexible. For example, it is not important for the pre-test that the test case delivers a correct
result, as long as it delivers a result and does not crash, for example.

Examples

e For a banking application, the pre-test consists of a script of 25 end-to-end test cases.

«  With another financial organization, the pre-test takes a day in which a tester executes
the test cases which contain the most important functionality.

*« A telecommunications organization requests the supplier of the software to execute a
number of end-to-end test cases as a pre-test.



Products

Checklist of test object intake test
Pre-test test script.

Techniques
Not applicable.

Tools
Not applicable.

4.3.7 Execution phase

Aim
To obtain insight into the quality of the test object through the execution of the agreed
tests.

Context

The actual testing takes place during this phase. The test object is delivered and as much
as possible has been prepared in the preceding phases in order to keep the test execution
as brief as possible.

Preconditions

The following conditions should be met before the Execution phase can commence:
« The test object, or a separately testable part of the test object, should have been
delivered.
« The test scripts for the test object, or the separately testable part of the test object,
should be ready.
« The intake of the associated test infrastructure should have been completed
successfully.

Method of operation

The actual execution of the test begins at the point when the test object, or a separately
testable part of the test object, is delivered. The test object is first checked for
completeness. Subsequently, it is installed in the test environment to assess whether it
functions as it should. This is done by carrying out a preliminary test, the so-called pre-test.
This is a general test, with the aim of examining whether the information system under test,
in conjunction with the test infrastructure, is of sufficient quality to undergo extensive
testing. If, on the whole, it is of sufficient quality, the cenftral starting point is prepared. The
test may be executed on the basis of the (manual or automated) test scripts that were
created in the Specification phase. In that case, the starting points for the test scripts
should first be prepared. Execution of the test can also be carried out in an exploratory
manner, or on the basis of checklists. During the execution, the test results are logged.
Investigation of the causes of any differences between expectations and obtained test
results takes place after the test execution. Causes of differences may lie in software faults,
but other causes are possible. For example, there could be mistakes in the test basis, in the
test environment or in the test cases. When a fault has to be solved, this is formally
reported as a defect. When the defect has been solved, a new test can be executed.

298



Thus, this phase often involves an iterative process of test-rework-retest. The substance of
this iterative process depends on the cause of the fault. For example, a fault in the test
basis can result in a renewed (re)planning of the test, after which the phases of
Preparation, Specification and Execution are gone through again. With a fault in the
software, the iterative process of test-rework-retest may be restricted to a repeat of the
Execution phase.

Roles / responsibilities

All the activities can be carried out by all the test-team members. However, the check on
completeness of the test object is done by the test manager, aided by the (if applicable)
test infrastructure coordinator.

Activities

Within the Execution phase, the following activities are distinguished:
1. Intake of the test object

2. Preparing the starting points

3. Executing the (re)tests

4, Checking and assessing the test results.

The following scheme shows the sequence and dependencies between the various
activities.

e EHE o )

Figure 55. Execution Phase

4.3.7.1 Intake of the test object

Aim
To establish whether the delivered parts of the test object function in such a way that
adequate testing can be carried out.

Method of operation

The method of operation includes the following subactivities:
¢ Checking completeness of the delivered test object
e Executing the pre-test.

Checking completeness of the delivered test object

With the aid of the checklist created in the Specification phase, the delivered test object is
checked for completeness. This is done by the test manager, assisted by (where this role is
taken) the test infrastructure coordinator. Missing parts are reported, by means of a
defect, to the parties involved. If the defect is test-obstructive (i.e. the subsequent
subactivity, the pre-test, cannot start), then this should be solved immediately. It is
advisable to carry out this subactivity together with the department that maintains the test
environment, since this department depends on a complete delivery of the test object,
otherwise the installation will be wrong. Moreover, they have the technical knowledge to
be able to check the test object on the aspect of completeness. Following approval, the
test infrastructure coordinator can install the fest object (or have the administrators do so).

299



Executing the pre-test

As soon as a (version of the) fest object is installed, it is important o carry out a pre-fest.
This takes place before the actual testing begins. The purpose of the pre-test is to evaluate
whether the test object is of sufficient quality for testing. The pre-test is carried out by
executing the test script that was created for this during the Specification phase. It
regularly happens in practice that systems are wrongly delivered or wrongly installed in the
first days of testing, thus delaying the start of the test execution. This is not only a waste of
time, it also demotivates the test team. It is important to consider this when creating the
test plan.

Tip

The pre-test as negotiation reinforcement

With a pre-test, the test manager’s position is strengthened considerably when he wants to
argue that the clock has not yet started for the main test. That is to say, if from Monday, 10
days of test execution were planned and the pre-test only succeeds on Wednesday, the
10 days only begin from Wednesday. There is room for discussion here, but the test
manager will have a much stronger negotiating position.

A condifion of the execution of these subactivities is that the required test infrastructure is
available. This means effectively that the intake of the infrastructure should have gone
successfully (see section 6.4.4 “Intake of the infrastructure”). A successful pre-test is a
condition for the starting of the subsequent activities in the Execution phase. The defects
from the pre-test are registered and, if a defect is test-obstructive, it is immediately
submitted to the parties involved. Every effort should be made, with the highest priority, to
solve the test-obstructive defects and allow the pre-test to complete successfully.

Example 1

With the building and testing of a new registration system, time is running out. It is decided
to ask the testers to sacrifice their free Saturday and Sunday and to fest over the weekend.
Experience shows that the delivery and installation of the test object in the test
environment does not always progress smoothly. In many cases, parts of the test object
are missing or do not work at all.

In order to avoid the testers turning up on Saturday for nothing because the installation of
the test object has failed, it is decided on Friday evening to carry out a pre-test. This is
done by the test manager and the test infrastructure coordinator. Together, they check at
18:00 hours, on the basis of a selection of test scripts, the quality of the delivered test
object. If this is sufficient for testing, they contact the test team members before 20:00
hours to tell them that the test is going ahead.

Example 2

A new version of an administrative system has been developed by an external supplier on
the other side of the world. It is agreed with the supplier that, before it is delivered and the
FAT is carried out, a pre-test will take place. This test is carried out, via the Internet, on the
supplier’s infrastructure. It provides an initial impression of the quality of the system and
confirms that the FAT can actually begin. This also avoids the installation of the test object
in the company’s own infrastructure causing problems through distrust of the supplier. They
have witnessed it working there, after all!

300



Products

Defects
Installed and testable test object.

Techniques
Not applicable.

Tools

Testware management tool
Defect management tool
Automated test execution tool
Monitoring tool

Comparator

Database manipulation tool
Simulator

Stubs and drivers.

4.3.7.2 Preparing the starting points

Aim
To prepare the starting point required for the execution of the tests.

Method of operation

Before the execution of the fest cases in the test script can begin, the test object should
be placed in the appropriate condition or situation. This not only involves the preparation
of the test data necessary for the processing, but also the setfting of the system and fest
environment in a particular condition. It may concern, for example, the formatting of a
disk, or even the configuring of an input device.

Two types of situations of the test object are distinguished within TMap:
1. A central starting point for a number of tests
2. Astarting point per test script.

At the start of a test, the central starfing point is created. The test object and test
environment are then ready to receive the input in accordance with the test scripts (af
any rate those that are executed first). The test data are gathered as described during the
activity “"Defining central starting point(s)” in the Specification phase. The gathering of
these test data can take place in various ways. Defects found during the gathering of the
test data are registered in accordance with the procedures laid down in the test plan.

Tip
Backing up the central starting point and checking this
As soon as the test object has been placed at the central starting point and checked, it is

adyvisable to create a backup. This can be restored at any given point. It is important to
carefully check this principle of backup and restore before commencement of the tests.

Products
Defects

301



Cenfral starting point
Starting poinfts.

Techniques
Not applicable.

Tools

Testware management tool

Test data tool

Model-based testing tool

Automated test execution tool
Performance, load and stress test tool
Database manipulation tool.

4.3.7.3 Executing the (re)tests

Aim
To obtain test results, on the basis of which evaluation of the test object can take place.

Method of operation

The method of operation includes the following subactivities:
e Executing explicif tests;

e Executing implicit tests;

e Executing evaluations on end products.

Executing explicit tests

In explicit testing, explicit test cases are executed to obtain information on the property
(quality characteristic) or system part under test. Results are obtained by running software
and executing operations on the test object. These results are compared in the
subsequent activity against the expected results, thus delivering any defects. Explicit
testing is the most usual way of testing. There are two possible types of explicit testing:

« Testing on the basis of specified tests created in the Specification phase.
The specified tests that are created in the Specification phase form the starting point
for the tests to be executed here. These may be test scripts containing the test actions
and checks or the physical test cases. The test scripts are described in an optimal
sequence and form the stepped plan for the test execution. If it has been decided to
use tools for automated test execution, then the specified tests are executed with the
aid of a test tool. In addition, tests can also take place on the basis of checklists orin
another form. An important condition for a worthwhile explicit test is that the testers do
not deviate from the test cases and execute at least the described test cases.
Otherwise, there is no way of guaranteeing that the strategy laid down in the test plan
is actually being carried out.

+ Testing on the basis of an exploratory technique.
With this type, the tester carries out exploratory work during the explicit test. This means
that the tester is examining the application under test piece by piece, thinking about
what should be or could be fested (test design) and then does it (test execution). In
doing so, the fester is gaining knowledge of the application, considering what should
be tested next, testing it, et cetera. The design and subsequent execution of the tests

302



take place in close succession. Possible techniques are “Exploratory Testing” and “Error
Guessing”.

Tip

A quick way of helping inexperienced testers on their way is to carry out this activity in
pairs. Team up an inexperienced tester with an experienced one [Kaner, 2001]. In this, one
tester is responsible for the test. He involves another tester, with one of them operating the
keys and the other thinking about the things to be tested, observing, taking notes and
researching. By thinking aloud, the testers together generate many more ideas than they
would separately. They also help each other not to lose sight of the test goal because of
unimportant details. Coaching in pairs is certainly to be recommended, particularly in the
beginning. Testing in pairs is less successful if the individuals are very introverted or very
assertive.

These two types of explicit testing do not exclude each other. In fact, when applied in
combination, they can reinforce each other. Reasons for combining the two types may
be:

« During the execution of the specified tests, it is felt that insufficient insight into the
quality has been obtained. By now testing exploratory in a number of areas within
the test object, this impression can be either substantiated or dispelled.

« The strategy for a retest may be that only those parts of the test object are tested
that have been amended by the programmers. In order to be sure that the
unchanged parts still work, they can be subjected to some exira, exploratory,
testing.

« The addition of exploratory testing over and above the specified testing can be
useful as a stimulus for creative testing. This could be scheduled, for example, for a
Friday affernoon. Many testers are more creative during this part of the week. Just
before the weekend, the mood is good and everyone is open to experimentation.
These experiments may cover very exceptional situations, but perhaps also those
that are so ordinary that they are overlooked. It is then that crucial faults may be
found in the test object.

« During the execution of a test script, a fault may occur. This has fo be investigated
further, before it is reported as a defect. It can be observed whether the defect
always occurs or only in the specific situation. Alternatively, perhaps the defect
occurs in other (similar) areas in the test object. There is also the possibility that
several defects are located together. This investigation can take place on the basis
of exploratory testing (see also section 4.7 “Defects management”).

Tip

Faults located together

Faults have a tendency to clustered together within a test object. If a fault occurs in a
particular function, screen, operation or other part, the chances are that other faults are
there as well. There are various causes for this. For example, the particular part may
contain more complex code, so the likelihood of the programmer making a mistake is
greater. Alternatively, a particular part may have been created by an inexperienced
programmer, or by one who was having an off day. It is therefore advisable, when a fault
is found, always to search the area for other faulfs.

Executing implicit tests

During explicit festing, information can also be gathered on other properties (quality
characteristics). No explicit test cases are designed for these. This is referred to as implicit
testing, and the tests can be executed planned or unplanned. If planned, it is agreed in

303



advance that this is fo form an actual part of the test strategy. Testers can then be asked
in advance of the test execution to observe a number of characteristics (such as
performance or usability) of the test object. This is therefore not based on any targeted
test cases. Another way is to question the testers after the execution of the explicit test.
However, there is the risk that, since no specific attention has been paid to these things,
wrong information will be given.

Unplanned implicit testing arises because, during execution of the test, certain things start
to catch the attention. It is agreed to observe them more closely. If, for example, regular
system breakdown takes place, a decision can be taken as regards reliability.
Alternatively, if certain screens do not have an appealing look and feel, something can
be said about the usability.

Executing evaluations

It is laid down in the test strategy whether evaluation on end products should be carried
out. In evaluations, products are assessed without any software being run. This evaluation
usually consists of the inspection of documentation, such as security procedures, training,
manuals, et cetera and is often aided by checklists. On the basis of these, it is attempted
to obtain insight into the relevant quality aspect. Here too, any defects are registered and
processed by means of the defects procedure (see section 4.7 “Defects management”).

Products
Test results.

Techniques

Exploratory Testing
Error Guessing.

Tools

Testware management tool
Defect management tool
Model-based testing tool
Automated test execution tool
Performance, load and stress test tool
Monitoring tool

Code coverage tool
Comparator

Database manipulation tool
Simulator

Stubs and drivers.

43.7.4 Checking and assessing the test results

Aim
To analyze the differences between the obtained test results and the predicted results in
the test scripts or checklists.

Method of operation

The method of operation includes the following subactivities:
« Comparing test results

* Analyzing differences

e Determining retests.

304



Comparing test results

The test results are compared against the predicted results in the test scripts and checklists.
If testing is being done based on an exploratory technique, the tester will compare the
outcome against the documented test basis, such as the functional design or a
requirements document. If there is no documented test basis, the tester needs to find
other ways of comparing the outcome. This information can be obtained, for example,
from norms and standards, memos, user manuals, inferviews, advertisements or rival
products.

In more detail

The dangers of testing without a documented test basis

If no documented test basis is available to the tester, there is a real risk that he or she will
begin to rely on information sources other than the test basis, such as his or her intuition. An
unwanted end result may be that system and documentation are running out of sync. If
the system is correct and the documentation wrong, this can lead to maintenance or
administration problems. Conversely, it is possible that (deep) functiondlity is described in
the documentation that has been incorrectly implemented in the system and that has not
emerged with testing based on sources other than the system documentation. Another
unwanted end result may be that, in the absence of clarity concerning the scope, the
testers generate an endless stream of change requests in the form of defects.

If there are no deviations, this is logged. If deviations are found, they are analyzed. The
comparing of the test results often takes place simultaneously with the execution of the
test. For example, by checking off the steps in the test script it can be indicated whether a
test result corresponds with the expected result. In certain cases, it is not possible to do this
during the test (e.g. with batch systems, where the outfput of several test cases is
presented).

Analyzing differences

The differences found are further analyzed during this subactivity. The tester should perform
the following steps:

+ Gatherevidence

e Reproduce the defect

» Check for own mistakes

« Determine suspected external cause

» Isolate the cause (optional)

* Generadlize the defect

« Compare with other defects

»  Write defect report

* Haveitreviewed.

These steps are explained in the section on “Finding a defect”. The steps are listed in the
general sequence of execution, but it is entirely possible to carry out particular steps in
another order or in parallel. If, for example, the tester immediately sees that the defect
was dlready found in the same test, the interim steps need not be performed.

In the test scripts, the numbers of the defects are registered with those test cases where
the defect was found. In that way, it quickly becomes clear in any retest at least which
test actions need to be carried out again. Various test tools are available both for
comparing the test results and for analyzing the differences.

305



Determining retests

Reasons for carrying out retests may be found defects. If the cause of the defect concerns
a fault in the test execution, the relevant test is carried out again. Defects that have their
origin in a wrong test script or checklist are solved. Thereafter, the changed part of the test
script is executed again or the entire checklist is gone through again. Faults in the fest
environment should also be solved, after which the relevant test scripts are executed
again in their enfirety.

Faults in the test object or the test basis will usually mean a new version of the test object.
With an fault in the test basis, the associated test scripts will usually also need to be
amended. This often involves a lot of work. When retests take place, it is important to
establish the way in which they are to be carried out. The test manager will determine in
the Control phase whether all the test scripts should be carried out again in whole orin
part, and this partly depends on:

» The exit criteria set out in the test plan

« The severity of the defects

* The number of defects

« The degree to which the earlier execution of the test script was disrupted by the

defects
* The time available
e The risks.

In more detail

When to test solved defects?

Defects that have been solved must be tested again. The timing of these fests can be

quite different.

1. Test as soon as a defect is solved. The advantage of this is that the programmer, who
has solved the defect, sfill has it fresh in his memory. He can therefore act quickly in the
event that the defect appears not to be solved. The disadvantage is that the code is
often changed, delivered and tested. Mistakes can be easily made here, and that is
less efficient for the tester.

2. Gather solved defects and test these. The advantage of this is that defects can be
solved and tested collectively (e.g. per module or per screen), which is a more
efficient way of working. The code is also more stable, so that the chances of a defect
returning are minimal. The disadvantage, however, is that this method takes longer.

The choice of option 1 or 2 depends on the project and the way of working. If it is possible
to deliver a release of an application every day (also known as the ‘daily build’) and there
are a large number of defects to be retested, the strategy may be to choose a mix of the
above. It is then determined each day which solved defects will be included in the release
and these can then be tested by the test tfeam the following day. It is important in that
case to set up a separate test environment and only fo use it for testing the solved defects
in the releases. In addition, a test of the entire test object will have to take place at the
end, in order to establish that nothing else has changed (regression).

Products

Defects
Logging of the test results.

306



Techniques
Not applicable.

Tools

Testware management tool

Defect management tool

Test data tool

Automated test execution tool
Performance, load and stress test tool
Monitoring tool

Code coverage tool

Comparator

Database manipulation tool.

307



4.3.8 Completion phase

Aim
* Tolearn from experience gained during this test
e To preserve testware for reuse in a future test.

Context

With the structured test method of TMap, much benefit is to be gained from the possibility
of repeating the process. This allows products, provided that they meet certain
requirements, to be reused in a subsequent test. In turn, this can ensure that certain
activities will proceed faster. Products may be tangible things, such as test cases or test
environments, but also infangible things, such as valuable experience.

Preconditions

The following condition should be met before the Completion phase can commence:
¢ The test execution is almost finished.

Method of operation

The test process is evaluated. The aim here is to learn from the experience gained and fo
apply the points of learning to any new test. This also serves as input for the final report,
which the test manager creates in the Conftrol phase. Also a selection is made from the
often large quantity of testware, such as the test cases and the description of the test
infrastructure. The point here is that with changes and associated maintenance tests, the
testware only requires adjustment, so that it is not necessary to design a completely new
test. During the test process, efforts are made to keep the test cases corresponding with
the test basis and the developed system. If necessary, the selected test cases should be
updated.

Roles / responsibilities
All the activities can be carried out by all the team members.
Activities
The Completion phase consists of the following activities:
1. Evaluating the test process
2. Preserving the testware.

The scheme below shows the sequence and dependencies between the various

activities:

Figure 56. Completion phase
4.3.8.1 Evaluating the test process

Aim
To learn from experience gained during the completed test and to document the learning
points for future tests.



Method of operation

Conftinuous learning, followed by using the new knowledge, is an important topic in TMap.
A way of doing this is fo organize evaluation sessions. These sessions are mostly aimed at
generating lessons and learning experiences for the future. The subject of evaluation may
vary, according to requirements. It may concern the evaluation of the test process, the
results of the test, the involvement of the various parties in if, the use of the test
infrastructure et cetera. It is important here to clarify how the people involved in the test
experience the subject. An evaluation should take place upon completion of the fest, but
it is advisable also to do this regularly during the test itself. In this way, it is possible to learn
continuously and to apply what has been learned. An aid for asking the appropriate
questions during an evaluation is the “Evaluation of the test process” checklist
(www.tmap.net).

The test manager creates a final report in the Control phase. This report describes how the
test process has performed. It also supplies figures for purposes of future test processes,
and the result of the evaluation serves as input here.

Tip

Evaluations as leverage for change

The carrying out of evaluations may have a purpose that extends beyond simply reusing
the acquired knowledge. It may also have the purpose of setting up the knowledge as
leverage for change. A condition for this is that the test manager’s role is one in which he
can propose changes. These proposals can then be included in the final report. If this
process is already taking place during the execution of the project, there is the great
advantage that the changes can be implemented immediately. A condition for success is
that the sharing of knowledge be encouraged at every level, this is possible by, for
example, organizing (informal) meetings. During these meetings, there should be a relaxed
and egalitarian atmosphere. Involve all the parties in the meeting, talk about the problems
and try to find immediate solutions.

Example

Testers as sounding board

During a test, more and more English-speaking developers came to the Dutch-speaking
testers to ask questions concerning particular functional specifications. It appeared from
various informal meetings on Friday afternoons that they had difficulty with the
combination of the broken English of the Dutch designers and the long screeds of text.
From within their expertise, the testers had built up in-depth knowledge of the system. In
consultation with the various parties, it was then decided that the testers could serve the
developers as a sounding board. In addifion, a selection was made from existing test
scripts that had to be executed by the developers before they delivered their piece of
software. This benefited the general quality and pace of the test process, defects were
now found during development and there was a greater involvement of the developers in
the testing and vice versa.

Products
Evaluation of the test process.

Techniques
“Evaluation of the test process” checklist (www.tmap.net).

309



Tools

Testware management tool
Defect management tool.

4.3.8.2 Preserving the testware

Aim
To select and update the produced testware in such a way that optimal use can be
made of it in future tests.

Method of operation
The method of operation includes the following subactivities:

. Selecting testware
. Collecting and refining testware, making it accessible
. Transferring testware.

This activity has a close connection with the activity “Preserving the infrastructure” in the
Setting up and maintaining infrastructure phase.

Tip

Starting the activity of preserving testware earlier

Although Preserving Testware is the last activity in the TMap life cycle model, it is advisable
to start this early on. By allowing for the possibilities of preserving testware as early as the
Specification phase, certain standards can be developed or certain tools can be
employed, so that the eventual preservation will proceed faster. By, for example, working
from the start with consistent version-numbering and a central store for all the products,
there is no need to search for the latest version of all the products during this activity. The
use of a testware management tool can help with this. How the preserving takes place is
defined in the activity “Organizing the management” in the Planning phase.

Selecting testware

In consultation with the future administrator of the system, an inventory is drawn up of
which testware is to be made available to him. The purpose is to render the testware
reusable for changes and associated maintenance tests, so that it will not be necessary to
design a completely new test. The final choice of testware to be made available is made
on the basis of a costs/benefits analysis. Subjects in this would be ‘What will it cost to
maintain the testware (storage and updating)’ and ‘What will it cost to make it a new’.

The test products to be delivered are set out in an inventory. This is an overview of the test
products to be preserved. It is important to indicate the way in which the test products
were created, in order to facilitate appropriate future maintenance. Bear in mind here in
parficular the test design techniques, tools, et cetera that were used.

Collecting and refining testware, making it accessible

The testware to be fransferred should be completed and adjusted where necessary.
During the last phase of the execution, in particular, maintenance of the testware is often
postponed. Before fransfer to the future users can take place, any changes should be
processed. The testware should also be made accessible. This means that it should be
stored in such a way that it is readily available to the future users. That may mean, for
example, that the directory structure has to be set up differently or a particular tool must
be used.

310



In more detail

Adjust regression test set

The updating of a regression test set is often overlooked. For that reason, it is advisable to
include this activity as standard within the activity of “Preserving the testware”. During the
test execution, it may have been that the system reacted differently from what was
assumed in the test script. If this is the case, the test script should be amended in
accordance with the new situation. It should also be determined whether, and if so which,
new test scripts need to be added to the existing regression test set.

Transfer of testware

Finally, the actual transfer of the testware takes place. In accordance with the testware
inventory, all the selected parts are electronically, and sometimes also physically (on
paper), transferred to the maintenance department.

Products

Testware inventory
Reusable testware.

Techniques
Not applicable.

Tools

Testware management tool
Test data tool.

4.4 Quality characteristics

For purposes of testing, TMap employs the set of quality characteristics shown below.
Another common set of quality characteristics can be found in the international standard
ISO25010. The use of a set of quality characteristics, whether from TMap or from ISO25010,
isrecommended as a way to check for completeness. It allows you to check that, out of
all the aspects or characteristics of a system or package under test, a careful decision has
been made about whether or not to test these. It makes little difference which set is
applied. Often, the organization has already made a choice. An illustration of the TMap
quality characteristics comparable to ISO25010 can be found at www.tmap.net.

In more detail

There are a number of reasons for keeping to the TMap set of quality characteristics and
not changing to ISO25010:

* In many organizations, TMap is the standard for testing, including the TMap set of
quality characteristics. These organizations see little need to change over to
another set of quality characteristics

» The testing of functionality is one of the most important areas of focus in testing,
and is discussed a lot in this book. ISO25010 sees functionality as an umbrella
concept, which takes in, for example, security and suitability. Therefore, within ISO,
the testing of security and suitability fall under the testing of functionality. This is
confusing in a book on testing

311



+ |1SO25010 is not necessarily better or worse than the TMap sef; it is simply different

+  While ISO25010 is an international standard, in practice it appears that many
organizations make their own little variant on this, which defracts from the authority
of ISO25010 as a standard. Various organizations also follow old versions of
ISO25010 (e.g. ISO9126).

The quality characteristics distinguished by TMap:
e Connectivity

e Continuity

* Data controllability

o Effectivity

» Efficiency

* Flexibility

* Functionality

e (Suitability of) infrastructure
* Maintainability

*  Manageability

* Performance

* Portability

* Reusability

e Security

e Suitability

» Testability

* User-friendliness.

A description of each quality characteristic is given below, with an indication of the ways
in which the testing of these takes place in practice.

Connectivity

The ease with which an interface can be created with another information system or
within the information system, and can be changed.

Connectivity is evaluated by assessing the relevant measures (such as standardization)
with the aid of a checklist. The evaluation of connectivity therefore concerns the
evaluation of the ease with which a (new) interface can be set up or changed, and not
the testing of whether an interface operates correctly. The latter is normally part of the
testing of functionality.

Continuity

The certainty that the information system will continue without disruption, i.e. that it can be
resumed within a reasonable fime, even after a serious breakdown.

The continuity quality characteristic can be split into characteristics that can be applied in

sequence, in the event of increasing disruption of the information system:

* Reliability: the degree to which the information system remains free of breakdowns

* Robustness: the degree to which the information system can simply proceed after the
breakdown has been rectified

* Recoverability: the ease and speed with which the information system can be
resumed following a breakdown

» Degradation factor: the ease with which the core of the information system can
proceed after a part has shut down

* Fail-over possibilities: the ease with which (a part of) the information system can be
continued at another location.

312



Confinuity can be evaluated by assessing the existence and setup of measures in the
context of continuity on the basis of a checklist. Implicit testing is possible through the
collecting of stafistics during the execution of other tests. The simulation of long-term
system usage (reliability) or the simulation of breakdown (robustness, recoverability,
degradation and fail-over) are explicit tests.

Data controllability

The ease with which the accuracy and completeness of the information can be verified
(over time).

Common means employed in this connection are checksums, crosschecks and audit trails.
Verifiability can be evaluated, focusing on the setup of the relevant measures with the aid
of a checklist, and can be explicitly tested focusing on the implementation of the relevant
measure in the system.

Effectivity

The degree to which the information system is tailored to the organization and the profile
of the end users for whom it is intended, as well as the degree to which the information
system contributes to the achievement of the company goals.

A usable information system increases the efficiency of the business processes. Will a new
system function in practice, or note Only the users’ organization can answer that question.
During (user) acceptance tests, this aspect is usually (implicitly) included. If the aspect of
usability is explicitly recognized in the test strategy, a test type can be organized for it: the
business simulation. During a business simulation, a random group of potential users tests
the usability aspects of the product in an environment that approximates as far as possible
the “real-life” environment in which they plan to use the system: the simulated production
environment. The test takes place based on a number of practical exercises or test scripfs.
In practice, the testing of usability is often combined with the testing of user-friendliness
within the test type of usability.

Efficiency

The relationship between the performance level of the system (expressed in the
fransaction volume and the total speed) and the volume of resources (CPU cycles, 1/O
time, memory and network usage, etc.) used for these.

Economy is explicitly tested with the aid of tools that measure the resource usage and/or
implicitly by the accumulation of statistics (by those same tools) during the execution of
functionality tests. This aspect is often particularly evident with embedded systems.

Flexibility
The degree to which the user is able to introduce enhancements or variations on the
information system without amending the software.

In other words, the degree to which the system can be amended by the user organization,
without being dependent on the IT department for maintenance. Flexibility is evaluated by
assessing the relevant measures with the aid of a checklist. Explicit testing can take place
during the (users) acceptance test, by having the user create, for example, a new
mortgage variant (in the case of mortgages) or (in the case of credit cards), change the
way of calculating the commission, by changing the parameters in both cases. It is often
tested in this way first, before the change is actually implemented in production.

313



Functionality

The degree of certainty that the system processes the information accurately and
completely.

The quality characteristic of functionality can be split intfo the characteristics of accuracy

and completeness:

e Accuracy: the degree to which the system correctly processes the supplied input and
mutations according to the specifications intfo consistent data collections and output

» Completeness: the certainty that all of the input and mutations are being processed by
the system.

With testing, meeting the specified functionality is often the most important criterion for
acceptance of the information system. Using various techniques, the functional operation
can be explicitly tested.

(Suitability of) Infrastructure

The appropriateness of the hardware, the network, the system software, the DBMS and the
(technical) architecture in a general sense to the relevant application and the degree to
which these infrastructure elements interconnect.

The testing of this aspect can be done in various ways. The tester’s expertise as related to
the infrastructural elements concerned is very important here.

Maintainability

The ease with which the information system can be adapted to new requirements of the
user, to the changing external environment, or in order to correct faults.

Insight into the maintainability is obtained, for example, by registering the average effort
(in the number of hours) required to solve a fault or by registering the average duration of
repair (Mean Time to Repair (MTTR)). Maintainability is also tested by assessing the internal
quality of the information system (including associated system documentation) with the
aid of a checklist. Insight into the structuredness of the software (an aspect of
maintainability) is obtained by carrying out evaluations, preferably supported by code
analysis tools.

Manageability

The ease with which the information system can be placed and maintained in an
operational condition.

Manageability is primarily aimed at technical system administration. The ease of
installation of the information system is part of this characteristic. It can evaluated by
assessing the existence of measures and instruments that simplify or facilitate system
management. Testing of system management takes place by, for example, carrying out
an installation test and by carrying out the administration procedures (such as backup
and recovery) in the test environment.

Performance
The speed with which the information system handles interactive and batch transactions.

314



Portability

The diversity of the hardware and software platform on which the information system can
run, and the ease with which the system can be transferred from one environment to
another.

Reusability

The degree to which parts of the information system, or of the design, can be used again
for the development of other applications.

If the system is to a large extent based on reusable modules, this also benefits the
maintainability. Reusability is evaluated through assessing the information system and/or
the design with the aid of a checklist.

Security

The certainty that consultation or mutation of the data can only be performed by those
persons who are authorized to do so.

Suitability

The degree to which the manual procedures and the automated information system
inferconnect, and the workability of these manual procedures for the organization.

In the testing of suitability, the aspect of fimeliness is also often included. Timeliness is
defined as the degree to which the information becomes available in time to take the
measures for which that information was intended. Suitability is explicitly tested with the aid
of the process cycle test.

Testability

The ease and speed with which the functionality and performance level of the system
(after each adjustment) can be tested.

Testability in this case concerns the total information system. The quality of the system
documentation greatly influences the testability of the system. This is evaluated with the
aid of the "testability review" checklist during the Preparation phase. Also for the
measuring of the testability of the information system a checklist can be used. Things that
(s’rrongly) benefit the testability are:
Good system documentation
e Having an (automated) regression test and other testware
« The ease with which interim results of the system can be made visible, assessed and
even manipulated
« Various test-environment aspects, such as representativeness and an adjustable
system date for purposes of time travel.

User-friendliness
The ease of operation of the system by the end users.

Often, this general definition is split into: the ease with which the end user can learn to
handle the information system, and the ease with which trained users can handle the
information system. It is difficult o establish an objective and workable unit of
measurement for user-friendliness. However, it is often possible to give a (subjective)
opinion couched in general terms concerning this aspect. User-friendliness is tested within
the test type of Usability.

315



441 Test types

In this section, a number of specific test types are discussed. Apart from the regression test,
this concerns test types for quality characteristics other than functionality. The reason for
this is that these test types are becoming more common in practice, but preparation,
specification and execution of these tests demand different types of knowledge than is
the case with the functional test types. Per test type, explanation is given of the aspect the
test type is aimed at, the relationship with the quality characteristics previously described,
the significance of the test and what test fechniques are possible.

The following test types are discussed in turn:

+ Regression

e Usability

44.1.1 Regression

What is regression?

A system or package is more or less always subject to changes. When it is in production, its
owner will want to implement certain changes or extensions. But amendments are made
even earlier, when a system is being built or a package is being implemented. This usually
relates to solved defects orimplemented change proposals. With iterative or agile
development methods, repeated issue of new, expanded releases (also known as
increments) is even inherent in the method.

With the making of the amendments (or extensions), it is possible for mistakes to be
infroduced into unchanged parts of the system (or package), causing the quality to
deteriorate. This phenomenon of quality deterioration is called regression, and it is the
reason that unchanged parts of the system also need to be tested. Although regression
can relate to all the quality characteristics, the testing of it in practice is aimed primarily at
functionality.

Definition

Regression is the phenomenon that the quality of a system deteriorates as a whole as a
result of individual amendments.

Importance of regression testing

The chance that faults have crept info an unchanged part of the system following an
amendment is smaller than if the part were to be newly built. Assuming that the risk is
determined by damage x chance of failure, the testing of the unchanged parts of the
system can take place with less testing effort than with a new or changed part of the
system. However, this is not to say that the regression test demands little effort. In
maintenance situations, in particular, the total effort for this regression test is often greater
than the testing effort required for the detailed testing of the changes. The reason for this is
that with maintenance, usually only a very limited number of functions change.

Definition

A regression test is aimed at verifying that all the unchanged parts of a system still function
correctly after the implementation of a change.

316




A good regression test is invaluable. Certainly in the maintenance situation, the test offers
reassurance that the new version of the system or package still operates correctly as a
whole.

Test design techniques

There are no prescribed fixed test design techniques for regression testing. All the existing
techniques can be used to specify the test cases in the test. However, a regression fest
focuses mainly on the correlation between the parts of the system, since this is where the
chances of regression are the greatest. This means that integration test cases and ‘good
path’ test cases are preferable to test cases for exceptional fault-handling situations. The
regression test is often initially stocked with test cases from the testing of new parts or the
original new-build tests and later supplemented with test cases for testing changes.
Suitable test design techniques are, for example, the data combination test, data cycle
test and the process cycle test. If the product risk analysis is available for the new build, the
damage factors assigned to characteristics and object parts can play a role in the
constitution of this regression test. Either a limited or a full regression test can be carried
out, depending on the risks and on the required test effort. For an explanation of the
scalable regression test, refer to the section on “Specification Phase”.

The regression test is sustained by adjusting or extending the test set on the basis of
changes to the system, including both functional adjustments and solved faults. This keeps
the regression test continuously up to date.

Because the regression test focuses on the system as a whole, the test is executed
frequently (at least once for each release), while the test rarely changes very
substantively. This is in confrast to a test for validating a specific amendment — usually only
carried out for the release concerned. The combination of a high frequency of use and
high level of stability means that a good level of reusability of the test is very important. It is
therefore essential to create and maintain a well-structured and documented test set.

In the execution of regression tests, test tools used for automated test execution come into
their own. The big advantage of the automated regression test is that, for little effort, the
full test can be carried out every time and no choices have to be made as to which part
of the regression test will or will not be executed.

4.4.1.2 Usability

What is usability?

As with most IT definitions, there is a variety to be found relating to usability. Even the
International Standards Organisation has two definitions:

Definitions
ISO 9241-11: the extent to which a product can be used by specified users fo achieve
specified goals with effectiveness, efficiency and satisfaction in a specified context of use.

ISO/IEC 9126: a set of attributes that bear on the effort needed for use, and on the
individual assessment of such use, by a stated or implied set of users.

From the various definitions, a number of aspects emerge that play a role in usability:
- Effectiveness
Are users able to complete their task and achieve their goal with the system?
+ Efficiency
How much frouble and time does it cost users o do thise

317




« Satisfaction
What do the users think of the ease of operation of the system?

« Ease of understanding
How easily does the user understand what the system expects him to input, and
how understandable is the output to hime

» Eose of learning
How quick and easy is it to learn and remember how to operate the system?2

« Aftractiveness
How attractive does the user find the system, as regards e.g. layout, use of color,
graphics, film clips and interaction?

* Robustness
How easily can the users make mistakes in the system; how serious are these, and
how easily can they be rectified?

Who the abovementioned user is, and which tasks he wants to carry out, plays an
important part. Users may be customers of the organization or users of the system within
the organization, but this also includes e.g. system administrators. A distinction should also
be made between untrained and inexperienced users as against tfrained and
experienced ones, and about the context in which the system is being used. A web
application on a smart phone has other standards for usability than a web application on
the PC.

The TMap quality characteristics that have most to do with usability are user-friendliness
and effectivity. In respect of the latter characteristic, usability testing looks at the effectivity
from the user’s standpoint, not at the general effectivity for the organization in total.
Usability testing also has some overlap with characteristics such as performance (if the
system is not fast enough, this detracts from the usability), functionality (often all kinds of
functionality are added to a system in order to make it more user-friendly) and conftinuity
(error-resistance).

While usability is largely a subjective concept, over the course of time a multitude of
publications on this subject have appeared. The best-known person in this area is
undoubtedly Jakob Nielsen [Nielsen, 1999]. In addition, the World Wide Welb Consortium
has set up guidelines for the accessibility of websites so that they are also suitable for
visually impaired people [www.w3c.org].

Importance of usability testing

The importance of usability has increased markedly with the rise in the digitization and
computerization of society. Via the Internet, organizations have acquired new
communication channels to their customers and the market, with new kinds of services
(online auctions, instant price comparison). The website has become the company’s shop
window and business card. Usability increases in importance when the user can purchase
the same service or product for the same price, either from a competing website or
through a fraditional communication channel, such as a shop or telephone helpdesk.

Example

Competing with fraditional communication channels

The government has a monopoly on the supply of certain services or information. With
web applications, substantial cost savings could be realized if enough citizens make use of
these, rather than using the telephone, sending in forms or going to the town hall.
However, if people prefer not to use the website, they will confinue to use the traditional
channels.

318



Other consequences of inadequate usability are that the users:

«  Make more mistakes, resulting in all kinds of reworking operations

«  Work less efficiently owing to confusion and more keyboard operation

« Do not know what they have to do and so make frequent calls to the helpdesk
+ Require long periods of learning.

Example

Usability of the ATM

The early ATMs in the Netherlands involved the following sequence of operations:

1. Insert PIN card in machine

2. Enter PIN code

3. Enter cash sum

4. Receive cash

5. Remove PIN card

Your aim as a user of an ATM, i.e. to withdraw cash, is achieved at step 4. Users regularly
forgot to remove their cards. This has been adjusted, by switching the last two steps. Now
the card is returned first, and only then is the cash delivered. In other countries, such as the
US, this adjustment has not yet been entirely implemented, as one of the writers found to
his dismay ...

While the usability of websites has greatly improved over recent years, this remains a risk
factor for a successful site. The rise of electronic agendas and smart phones, too, is giving
usability problems with websites for mobile use. But usability problems do not only occur in
relation to websites or custom applications — they also affect, for example, embedded
software and standard software packages. In the latter case, however, the possibilities for
improving the usability are often limited.

Test design techniques

A number of techniques are available for the testing of usability. Worth noting here is that
usability problems found at an advanced stage (such as the acceptance test) are often
far-reaching and difficult fo solve, for example because the application navigation or alll
the screen conftrols need to be changed. Usability and the testing of it should therefore be
taken into consideration from the beginning of the design stage, when it is still possible to
make relatively inexpensive adjustments. Possible test objects are, for example, apart from
the working system, prototypes and screen designs. A few of the most important usability
techniques are mentioned below. Roughly, they have the following characteristics:
*  Moment of applicability
Can the technique already be used for screen design; is a working system required
or is the technique intended for a system that is already in production
o Testers
Who evaluates the usability2e This may be usability experts and/or the actual users.

Heuristic evaluation

Heuristic evaluation is one of the best-known ways of testing usability. During a heuristic
evaluation, a systematic examination is carried out of the usability of the design of the user
interface. The ultimate aim of heuristic evaluation is to discover problems in the design of
the user interface. By finding such problems at the design stage, it is possible to solve them
in fime. During the process of heuristic evaluation, a group of 3-5 experts (evaluators) give
their opinion on the user interface in accordance with a number of usability principles (also
known as the *heuristics”).

319



In more detail

Nielsen distinguishes 10 heuristics; see [Nielsen, 2006]:
e Visibility of the system status

* Match between the system and the real world

e User control and freedom

e Consistency and standards

* Error prevention

* Recognition rather than recall

* Flexibility and efficiency of use

e Aesthetic and minimalist design

e Help for users to recognize, diagnose and recover from errors
¢ Help and documentation

Usability test

In a controlled environment, a number of observers watch the way in which one or more
users use the system. Besides usability experts, it is advisable to invite a number of designers
for this. A few tasks are selected for the user to perform that are characteristic of the
application.

In more detail

A task description typically consists of:

1. A sketch of the starting point, consisting of a description of the role that the subject
assumes and their background, e.g. an inexperienced user or an experienced
administrator

2. One or more tasks, e.g. check the status of the last order, compare the prices between
two suppliers and order an item from the cheaper of the two. The task should indicate
what has to happen, but not how the user should do it.

The subjects should read the role description and prepare themselves to carry out the

tasks from that background.

During the execution of the tasks, the idea is that the subject continually thinks aloud and
says what he or she is doing. For example, a reaction can be “I'm now going to the menu
and opening the option of ‘Information on company X', to see if | can find the route map
there. Oh no, it's not here... (Etc.)".

The onlookers observe the behaviour of the user and take notes. In a so-called usability
lab, the observers remain behind a one-way mirror and everything is recorded on video
(both the images of the user and the images and operations on the computer). Another
technique, such as eye fracking (the registering of eye movements on the screen) and
other physiological measurements (heartbeat, perspiration) are possible here. Because of
the infrastructure and equipment used, a usability lab is generally (very) expensive. A
cheaper, but less effective, alternative to a usability lab is to have the observer sit with the
user and, for example, just use a video camera or use a tool to register the user’s actions
on the system.

The observer(s) then assess the usability of the system on the basis of e.g. the number of
mistakes made, the time taken to complete a task and the navigation path followed. They
also use the participants’ remarks during the test in their assessment of the usability.

Questionnaires

Another means of evaluation is to request the users’ opinion of the system using
questionnaires.

While they are also applicable to prototypes or even screen designs, questionnaires are
mainly used when the system is ready, or even already in production. When the

320



participants have completed enough questionnaires, an evaluation of the results follows.
While it is a relatively cheap method of testing usability, the disadvantage is that the result
will not deliver a particularly detailed impression of what is right and wrong in a system.
SUMI (Software Usability Measurement Inventory, http://sumi.ucc.ie) and WAMMI (Website
Analysis and Measurement Inventory, www.wammi.com) are methods that are based on
the use of questionnaires

CheckKlists, interviews

Cheap usability test techniques are the use of usability checklists during other (usually
functional) tests, or interviewing the testers and users after working with the system
concerning their experience of it.

Tools

Finally, tools are available, especially for web applications, that can carry out all kinds of

checks. Examples of these checks are:

e Are the graphics and animations provided with an alternative (a text box) for
supplying the same information in the event that the graphics, animations, etc. are not
working? This can be the case if you use a different browser, don’t have a video card
or are visually handicapped

« Is the size of the graphics too big, making the site slow?2

e Does every page contain a link for returning to the previous page and/or a link for
continuing on to the next page?

* Are the text boxes perhaps too long in a scrolling field2

* Are dll the links (still) valide

4.5 Test environments

451 Infroduction

A fitting test environment is required for testing a test object (running software). Setting up
and maintaining the test environment represents an expertise of which testers generally
have no knowledge. This is why a separate department — outside the project —is generally
responsible for setting up and maintaining the fest environment. Testers are, however,
heavily dependent on the test environment — no test can be executed without a fest
environment.

This section discusses in greater detail what a test environment is and what its setup and
mainfenance look like. The section “Test environments explained” defines what a test
environment is, after which section “Sefting up test environments” describes the setup
requirements for test environments. It also discusses the factors that determine the setup.
The next section (“Problems in test environmenfts”) describes typical problems relating to
test environments, followed by a solution to prevent these problems: the DTAP model in
section "DTAP model”.

Definition

A test environment is a composition of parts, such as hardware and software, connections,
environment data, maintenance tools and management processes in which a test is
carried out.

Hardware refers to all the tangible parts of a computer (screen, hard disk, network card,
etc.). Test environment software refers to all the programs that should be present on the
available hardware in order to run the software under test, such as operating programs,
DBMS, network and other support programs. Connections are everything that is required to
allow the test object to communicate with other systems. The environment data is the set

321




of data that the test environment requires to be able to work with these (user profiles,
network addresses, root tables, etc.). Maintenance tools are tools that are required
specifically to keep the test environment operational, and management processes are all
the activities that are carried out around the setup and maintenance of a test
environment.

The setup and composition of a test environment depend on the aim of the test. The
success of a test environment depends on the degree fo which it can be determined fo
what extent the test object meets the requirements. Every test may have a different aim,
which is why every test can use a different test environment. A unit test, for instance,
requires a completely different configuration of the test environment than a production
acceptance test.

Sometimes a test environment has a limited size (e.g. one single PC when testing a smalll
accounting package), while sometimes it involves a huge collection of hardware and
software, interfaces and procedures, set up in many different sites (e.g. for testing the
reservation system of an airline company). In addition to the test level and test type, other
aspects - like the maintenance standards, the type of application, the organization
structure and, not least, the available budgets - play an important part.

Test environments represent a critical success factor for virtually every automation project.
There are various reasons for this. For instance, in a production environment the
maintenance processes have been established for a long time and are still being
improved. This does not apply to a test environment. Processes are not yet or partly
established, and this may often vary per department and platform. The complexity
increases further if the test environment also uses new technologies that have not yet
been taken into production and with which the organization therefore has less
experience.

Another development in recent years is that applications use an increasing number of
different types of hardware and software. When setting up a test environment for this type
of applications, this is franslated to a chain of different hardware and software
configurations with mutual interfaces. The metaphor ‘the chain is as strong as its weakest
link” then holds true. If one configuration or interface in the chain fails, the entire chain is
useless and complete testing is impossible.

Furthermore, a problem or bottleneck in a test environment is not always quickly solved by
an administrator. After all, production always has the priority. This is neglecting the fact
that delays in the test process result in delays in commencement of production. Such
delays can have the same (or worse) consequences as defects that occurin production.

4.5.2 Setting up test environments

4521 Setup requirements

The degree to which it can be established in how far the test object complies with the
requirements determines whether a test environment is successful. The setup and
composition of a test environment therefore depend on the aim of the test. However, a
series of generic requirements with which a test environment must comply to guarantee
reliable test execution can be formulated.

322



Representative

The test environment must have the properties (as much as possible) that are required for
the planned test. This does not mean that the entire test environment must always equal
the production environment. For instance, for a functional test of an interface between
two applications you do not need a complete environment that matches the future
production environment.

Example

For the development of an application intfended for eventual use on a UNIX platform, a
Windows-based platform was used as the test environment for the system test. The
assumption was that the functionality would not be affected by the platform difference. A
UNIX-based test environment was used for the UAT and PAT.

Manageable

A manageable environment is required to test the test object under the same conditions
every fime. It must be clear at all times which version is installed in a test environment. This
applies not only to the test object, but also to all of the software (i.e. the operating system,
database management system, network protocols, etc). Changes in the components of
the test environment (hardware and software, test object, procedures, etc) cannot be
implemented unless with permission from the environment’s owner (in projects, often the
test management).

Flexible

A test environment must be easy to adapt. This may conflict with the previous requirement.
Which of the two requirements (manageable or flexible) takes precedence, depends on
the aim of the test and the phase of the test process. For instance, adjustments may be
necessary when analyzing defects orimplementing a new version of the software. It may
also be necessary to create or eliminate specific connections with other systems. If this is
done in a test environment of one project, which has no impact on anybody else, flexibility
wins. In case of a shared environment (e.g. an end-to-end fest environment),
manageability is preferred. Other examples of possible changes are the system dafe and
time, currency, calculation units and regional settings. Adjusting the system date and time
may be necessary to make time jumps during testing. This is also called time travelling,
making it possible for the system to be moved to the past or the future. It can be used, for
instance, to run a system cycle of one year in just half a day. Changing regional settings is
important when testing software that will be used in several countries.

Continuous

If there are disturbing situations in the test environment, one must try fo continue festing as
much as possible. The consequences of a failure must therefore be limited to a minimum.
An important mitigating measure is making regular backups so that they can be restored if
necessary. Furthermore, these secured initial situations can be used time and again for the
test or to investigate a specific defect. Another mitigating measure is to create a fallback
option for the test environment. The fallback option may consist of a second logical
environment in addition to the existing test environment. The risk is that, if problems occur
in the hardware, they affect both environments. Another opftion is therefore to set up a
second physical environment. To limit the costs to some extent, the organization may
decide to combine the second environment with the fallback facility for the production
environment.

323



Example

When adapting an application that was used for annual contract renewals, it was
necessary to perform tests on several dates and times (time travel). As such, easy
modification of the system date was a requirement for the test environment. Furthermore it
was necessary, due to the time fravel, to create regular backups and restore them later.
Not a complex combination of operations, but it did put a lot of work pressure on the
administrators of the test environment. It was therefore decided to develop a menu screen
containing the various operations and make it available to the testers. This relieved the
administrators and allowed the testers to have better grip of their environment.

4522 Factors determining the setup

Translating these requirements to the actual setup of a test environment varies for each
test. For instance, the fest environment for testing the screens in the system test may be
different from that for testing security during the acceptance test. A large number of
factors play a part in setting up the test environment. You wiill find a list of determining
factors, with a summary explanation, below.

+ The test level for which the environment is intended - unit, system or acceptance test
or possibly a combined test.

+ The test type for which the environment is infended - performance, usability, security or
regression teste

¢ Reqguirements made by the external organizations for the environment, e.g. supervisors
or (local or central) authorities.

+ Requirements made for the test data to be used. Are they small or big volumes? What
is the refresh rate?

» Existing test environments in the organization, if any. Can they be used? How can
individual requirements be implemented?

e Isthere a budget for setting up test environments and which options are available?

« Does the organization have standards for setting up test environments?

« The hardware and software architecture. Which development or production platform
is being used?e What are the options and which limitations exist, if any?

* The manner in which system development is organized. The methods, techniques and
phasing used for system development have an impact on the test environments in
terms of procedures.

« The type of system. Clearly the test environment has a strong relatfionship with the
nature of the test object, e.g. batch, online, mainframe, PC application, custom or
package.

« The level of distributed processing. What extent of data communication existse And in
what form? Is the network or network programming part of the test objecte Are
decentralized test sites used? Are there any interfaces with external organizations?

« Scope of the test. Should manual processes in e.g. input and output processing be
tested as well?

e The test environments of the programmer and tester must not be too distant in terms of
geography. While communication resources like telephone and e-mail may respond
to part of the communication requirement, frequent consultation between the various
stakeholders will be necessary. An optimal location choice can save a lot of fime and
money.

« Sometimes the use of test tools makes demands on the test environment in relation to
e.g. security, data storage and communication resources.

324



Tip

The cube notation for test environments

A lot of characteristics must be recorded for test environments. Characteristics that are
determinants for the identification of an environment, but also those about which an
agreement has to be reached with other parties. The registration method for these
characteristics partly determines the success of the various arrangements. When multiple
test environments are involved, the clear and structured recording of the characteristics
may be problematic. One way to do this is to work with the so-called cube notation. A
number of characteristics are placed in each visible plane of the drawn cube. An
example is shown in figure 57 “Cube notation of the various characteristics of a test
environment”.

N
o ey ol
Q"D{ é oo y QICQ% 0\0 . x Q/n)q/ x((lzb‘@@
- ) -
& 52 R N B
RGP R 357 N =
& PN e SN 2
's) N b‘(/ -Jf-b( V) u(,q +
< ~F s L o
oD &
o oo
o, ERT
Environment» o °5 |Loes
+ Elements D ST GAT PAT Prod o J3 [£=2%
= r EaE
| o
fm] — [ (i
: . Build Team | Test Team User Management User o nmr 5§85
Application 3.21 3.20 3.0 3.0 3.0 b >|§:' Tak
5 49
g oo
Data Build team Test Team User User User o o m
. (S
- o e
S oy
Interfaces Build Team | Test Team User User User ; &
=
-
OS Maintenance | Maintenance | Maintenance | Maintenance | Maintenance -
34.23.X2 34.23.%2 34.23.%2 34.23.%2 34.23.%2
Maintenance | Maintenance | Maintenance | Maintenance | Maintenance
Database 1 100 9,21 9.21 3.21 .
Security
, , Standards
Owner and installed version

Other infarmation

Figure 57. Cube notation of the various characteristics of a test environment.

This makes everything clear at a glance. We recommend hanging this plate in the
common test or project space so that everyone can see the applicable arrangements at
any time.

4.5.3 Problems in test environments

In automation projects, it often happens that many different environments are being used.

An organization may have one or more development environments, one or more test

environments, a production environment with a falloack environment and sometimes also

several maintenance environments. In this situation, the following problems might emerge:

* Returning defects. A defect detected in version X is solved in version X+1 but suddenly
reoccurs in version X+2.

325



¢ No guarantee that it still works. The development team cannot guarantee that
everything sfill works despite the fact that the release covers only a limited number of
defects.

+ Unannounced new features. When testing a new version, it is found that specific
features (new functionality, specific technical aspects) have already been realized
while the testers are not aware of them.

« No connection between defect and environments. A defect detected in environment
X does not occurin environment Y while they seem to be the same environments. E.g.
a defect does present itself in the acceptance test environment, but not in the system
test environment.

+ Defects cannot be investigated. A defect cannot be investigated anymore because
a user other than the tester has modified the test environment.

There are two solutions to prevent these problems. In the first place, the environments must
be separated according to the DTAP model. That model and how it can be used is
explained in the next section (“DTAP model”). In the second place, formal processes must
manage the setting up and maintenance of the environments. The latter solution is not a
part of this Workbook.

454 DTAP model

DTAP

DTAP stands for Development, Test, Acceptance and Production. The basic principle of
the model is that every user of the infrastructure wants to do his or her job undisturbed,
without being hindered by anyone else. For instance, the end user does not want to be
bothered by the tester, who in turn wants to be left alone by the programmer. This is why @
separate type of environment is defined for each of these parties. The 4 environment types
are analogous to the 4 stages software goes through: the software is developed
(development), tested (test), accepted (acceptance) and used (production).

While the DTAP model may initially look like a technical solution, it is not. The model does
not prescribe that there are 4 environments, but simply that there are 4 environment types.
Each of these 4 types has its own characteristics. As such, the DTAP model makes
allowance for the use of 7 environments, for instance, in a project (see figure 58 “Different
environments in a development project according to the DTAP model”). There might be
two development environments (local and centralized), one test environment, two
acceptance environments (user acceptance test and production acceptance test
environment), and two production environmenfts (production and shadow).

Environment type Deveiopment Test Acceptance Production
acc. to DTAP
Environment in Local Central

3T UAT FPAT Production Shadow
dEVE|Opm ent ii:?rloor?rrs::tt dei:?rloor?:nn:;tt environment | environment | environment | enwironment | enwironment
project

Figure 58. Different environments in a development project according to the DTAP model.

Owners and administrators of the environment types

Test activities can be executed in every environment type of the DTAP model. Since every
environment has an owner, administrator (manager) and its own group of users, the

326



various activities have their own characteristics (see figure 59). For instance, the test
environment type is managed differently than the production environment type. In the
DTAP model, it is important to distinguish which parties are the owners or administrator of
each type of environment. The owner is the party who determines which users are allowed
and what the administrators need to do. In the DTAP model, the aim for which the
environment is used determines the owner. Sometimes the owner is also the economic
owner, but not necessarily.

In the development environment type, it is generally clear who the owner and
administrator are. Both roles are fulfilled by the programmers. They acquire and maintain
the environment. It is equally clear for the production environment type. The user
organization is the owner, and often the maintenance is handled by a special
maintenance organization (on behalf of the user organization).

For the test and acceptance environment types it is often a bit more complicated
because multiple parties are involved. The user organization is the owner of the
acceptance environment and the testers are the owners of the test environment. But the
environments can be maintained by several parties. It may have been acquired by either
the project or the maintenance department. In the latter case, the maintenance may be
handled by the maintenance department or the testers themselves. The maintenance
can even be in the hands of the developers.

Environment type Owner Administrator

Development Developers Developers

Test Testers Developers/ Testers/
Maintenance organization*

Acceptance User organization Developers/ Testers/
Maintenance organization*

Production User organization Maintenance organization

* = different possible options
Figure 59. The possible owners and administrators of the 4 environment types.

Test types and the 4 environment types

The DTAP model does not impose a consistent link of a test type to one environment type.
This is to prevent negative consequences. Because of the consecutiveness of the test
process in the test environments defects may be discovered too late. This can be
prevented by executing a test type in more than one environment type. Clearly, the
delivery of the testable parts of the test object must be related to the test type (and the
associated environment). In this construction, the user may execute some tests in the
development environment.

The realization of this model is a challenge for the test management and stakeholders. The
owner of the environment must accept that his environment may be used for any test
type. Different user groups can use the environment. The time gain that can be achieved
thanks to parallelism of the tests and reduction of the repair costs due to earlier detection
of defects are more than worth the effort. It is therefore especially important that the test
environment fit the test type, in the DTAP model this is a perfect fit.

Tests in the development environment type

The unit test is executed in the same environment type in which the software and other
system components are developed: the development environment. Setting up this
environment and the related test activities are executed as part of the development

327



process. When a part of the environment must be used for a test, the developer himself is
usually the party arranging this. Often the development platform contains standard
facilities for testing, such as files, test tools and procedures for e.g. version management,
transfer, defect administration and defect repair. These facilities offer the developers
adequate options to manage their test process correctly. If there are no specific
requirements for the unit tests and the above standard facilities are available, the tests
can be executed correctly. An important aspect that programmers must deal with is the
manageability of their environment. In practice, a programmer often has five or more
versions of his software under management. Maintaining the relationship between the test
cases, test results and the test object requires a lot of afttention in this case.

Tests in the test environment type

The test environment type is created to test (parts of) the entire system for both technical
and functional aspects. This fest must be executed in a manageable environment.
Manageable means that resources are available fo fransfer and manage, among other
things, the software, documentation, test files and testware. The tester must be able to
control the transfer of new or changed software. The tests must be reproducible. It must be
possible to execute the individual tests of one (sub-)system separately from the tests of
other (sub-)systems. The simultaneous use of the same test data in particular may cause a
lot of tfrouble (see section 4.3 “Defining cenfral starting point(s)”). In this environment type,
tools can be used that provide the tester with insight at a technical level into various
events. Examples are the use of SQL to look directly in the database, having direct access
to the system’s log files, and being able to start up and stop batches (see section 4.6
“Types of test tools”).

Tests in the acceptance environment type

The acceptance environment type offers future users and managers the possibility to test
the test object in an environment resembling the production environment as closely as
possible. Usually the test in this environment type is split up intfo a user acceptance test and
a production acceptance test. The UAT checks whether the test object provides the
required functiondlity in relation to production facilities and procedures. The PAT checks
whether the system complies with the management and production standards, in ferms of
both procedures and aspects like volume processing and performance. It is preferable to
create a separate environment for the test types UAT and PAT, although it is naturally
possible to execute them in the same environment.

In more detail

The PAT environment as a production environment

Organizations often feel that a test environment for the PAT is costly. Not surprising,
because it is especially important for the PAT that the test environment is not only
functional, but even more so technically equivalent to the production environment.
Logically, this means that a PAT environment requires the same hardware as the
production environment (types and quantities). As such, a PAT environment is a second
production environment.

A solution is, in new development processes, to promote the PAT environment to
production environment when the system is delivered. This means only one production
environment is necessary. In maintenance projects, an option is fo execute the PAT in a
fallback environment, which is often a copy of the production environment. If there is no
fallback environment, it can be decided to execute the PAT in the production
environment at a moment when there are no users (e.g. at night or during the weekend).
Clearly this last option involves some risk in terms of availability of the production systems —
it is therefore recommended exclusively for relatively simple system:s.

328



Tests in the production environment type

Testing in an environment that is used for production is not desirable, and somefimes even
prohibited by regulatory bodies and other supervisors. In very exceptional situations, it is
sometimes unavoidable to test in the production environment type. In these cases, the
required test environment is so complex that it cannot be simulated or built. Example is a
complex system chain (often across several organizations or even countries). In this type of
cases, in-production testing is an opftion. But a lot of things have o be arranged for that
purpose. For instance, the new version of the software must be accessible exclusively to
the test team. Furthermore the execution of the test must not disturb the regular
production process. Furthermore an (external) supervisor often checks the test execution
because operations are executed (orders, payments, etc.) that are not formal.

329



4.6 Testtools

4.6.1 Infroduction

The development in recent years that can be summarized as ‘more for less, faster and
befter’ has an impact on all IT disciplines. With highly advanced development
environments, developers can design and build complex programs relatively easily and
quickly. The iterative development methods that are based on far-reaching interaction
with the users ensure, among other things, that projects make interim deliveries faster. Such
interim deliveries are then evaluated against the users’ wishes and requirements and the
defects are reworked in the software. This means that the software changes continuously
and regression risks are always there. Moreover, development is based more and more
often on reusing internal and external components that must be integrated into the
existing IT architectures. This has reduced the time required to develop new systems,
putting testing even more emphatically on the critical path in ferms of development and
maintenance. It even threatens fo become an obstructing factor.

All these factors, taken together with the fact that system testing is already perceived fo
be a time-consuming and costly activity, make higher productivity of the tester and higher
quality of the test a requirement. Test tools can be used as an instrument to achieve this.

Making test tools available to testers is often the responsibility of a separate department.
One reason is the fact that setting up and maintaining fest tools is a specific expertise. It is
something of which testers generally have little knowledge. Another reason for making test
tools the responsibility of a separate department is that big investments are often required
to infroduce tools in an organization. In addition to the high acquisition costs, investment is
required in training the people and developing new procedures. In other words, it takes
time to realize areturn on investment, often longer than one single project.

This section discusses test tools and their use in greater detail. Section “Test tools explained”
explains what a test tool is. Section “Types of test tools” then describes the various types of
test tools. Section “Advantages of using test tools” discusses the advantages of using test
tools. The subsequent sections describe how test tools can be implemented in test
organizations on the basis of a tool policy. To this end, section “Implementing test tools
with a tool policy” explains the concept of tool policy and describes the life cycle model.
The three phases are then listed, i.e. Initiation (desired effects, commitment,
preconditions), Implementation and Operation (use).

4.6.2 Test tools explained

Definition

A test tool is an automated instrument that supports one or more test activities, such as
planning, control, specification and execution.

One of the condifions for the successful use of test tools is the existence of a structured fest
method of operation. In a properly controlled process, tools can certainly add a lot of
value, but they are counter-productive in an inadequately controlled test process. In fact,
test tools automate the test process, which requires a certain repeatability and
standardization in the activities to be automated. An unstructured process cannot comply
with these conditions. The deployment of test tools, however, can serve to leverage the
implementation of a structured approach. However, the least that is required is structuring
and automation combined.

330




In more detail

Terminology: tools, test tools and CAST tools

Tools used in a test process are referred to in different ways. For instance, some simply talk
of tools, others of test tools, CAST fools (CAST stands for Computer Aided Software Testing),
or test automation. It is not possible to make an unequivocal choice for the right
terminology. There are parties that state that a tool is a test tool when it can be used
exclusively to support a specific test activity. The counter-argument is that some test tools
that serve to support test execution are sometimes used for other work. One example is a
test tool that can be used to automate test execution. This tool works on the basis of
automating operations and can also be used for data conversion. And that makes it a
tool in a wider sense again. TMap uses the terms tools and test tools interchangeably.

Being able to use test tools is now assumed to be one of the tester’s basic skills. However,
being able to set up and manage test tools and the far-reaching automation of routine
work (e.g. test execution) still requires specialist and in-depth knowledge of programming
and tools. Not every tester has that knowledge. As a result, new types of specialism have
emerged: test fool programmer, test tool expert, and test tool consultant.

In more detail

Price structure of test tools

There are all kinds of test tools, all with their own price structure. Commercial tools often
have a licensing system where a one-off price is agreed based on the number of users of
the tool. In addition to this one-off price an annual contract is signed, ensuring the
organization that the tool’s supplier will provide support and new updates and releases.
Often, this is called a maintenance or service contract.

In addition there are test tools with price structure on the basis of the variants shareware,
freeware and open-source software. The price structure for shareware is such that it can
be distributed without or with few restrictions, but a fixed price having to be paid when
used repeatedly. Freeware is software for which the author has issued a license for use and
further distribution in unchanged form without requiring compensation. Open-source
software goes one step further than freeware. In addition to the free distribution of the
software, the author gives permission for modifying the software. The modified software
can also be distributed freely.

Contrary to open-source software, freeware is protected fully by copyright. And contrary
to open-source software, the source code of freeware is not usually made available. More
and more (self-made) test tools are made available by the creators through the Internet
on the basis of these variants.

4.6.3 Types of test tools

Test tools provide support in the execution of certain activities in the various TMap phases.
There are different types of test tools, which can be classified in four groups:

1. Tools for planning and controlling the test

2. Tools for designing the test

3. Tools for executing the test

4. Tools for shaping the test environment.

4.6.3.1 Tools for planning and controlling the test

Like a business process can be supported by automated resources, a test process can be
supported by automated instruments. These are test tools that support activities in relation

331



to planning and conftrolling the test, like creating the planning, monitoring progress, and
registering defects. Because the tools focus on the process, in a technical sense they
operate independently of the test object. The following tool types are in this group:

+ Testware management tool

+ Defect management fool

* Planning and progress monitoring tool

*  Workflow tool.

In more detail

Test management tool not a separate tool type

Test management tools are not defined as a separate tool type in TMap. The reason is that
it offers an integrated set of functionalities in the field of various tool types. For instance, a
test management tool often supports testware management, defect management, and
planning and progress monitoring. While the functionality for each field is not usually as
comprehensive as in a specific tool type, the power of a test management tool lies in the
integration of the various tools. Often the test management tools are also integrated with
tools for automated test execution. The test management tool may also contain an
automated workflow. This means that the tool supports the entire test process — from
making the test plan to reporting on the results.

Testware management tool

All kinds of products are created in the course of the test process and together they form
the testware. It is very important that the products are adequately managed during a test
process. Testware management tools support the registration of the various versions of
testware that are created in the test process and the possible relationships between the
testware. For instance, it can be derived which test result belongs to which version of the
test scripts, or which version of the test specification belongs to which version of the test
basis. Furthermore, testware management enforces a certain level of structure and
uniformity.

Defect management tool

These tools support the registration and handling of test defects found during a test
process. The process of defect management is complex and voluminous. Sometimes the
number of test defects, depending among other things on the size and quality of the test
object, may amount to hundreds or thousands. Defects can also contain one or more
annexes with screen prints or parts of the test basis to clarify the problem. Several parties,
often in different locations, are involved in handling test defects. Sometimes the
procedure to handle defects depends on the urgency of the defect. Tools are available
to support these activities. In addition to the registration the lifecycle of a defect can be
monitored and tracked. Some tools also enable the creation of management reports and
mefrics.

Planning and progress monitoring tool

A tool to support the process of planning and progress monitoring is indispensable in large-
scale test processes. A planning must be calculated through and through in ferms of
activity time, start and end dates (if any), and allocated resources. Often, planning
packages provide ‘what if' analyses and are able to generate both strip planning and
network planning units. These tools help with estimating the effect for the test. See
www.tmap.net for an example. Progress monitoring must provide insight into the progress
made, and reports on this must be generated. Furthermore it must provide insight into the
required time and resources to complete the test process. An important aspect in the
selection of tools for planning and progress monitoring is the possibility of creating
management information, e.g. overviews of resources and costs.

332



Workflow tool

The TMap test process has various phases with activities and sub activities. Some of these
are interdependent: the output of an activity is the input for another activity, resulting in
multiple chains of activities (workflow). The activities in a chain are executed by one or
more persons in the fest team. In the case of large test teams, managing the entire
process with the various activity chains is a complex task. A workflow tool can provide
support. The workflow tool knows the activities to be executed and ensures that the work is
routed to the relevant persons. With the tool, the test manager has confinuous insight into
the status of the activities to be executed, and is aware of the total work stock. The tool
generates an alert when plans are exceeded or work stocks become unusually high so
that the test manager can intervene.

4.6.3.2 Tools for designing the test

Tools that support the specification of test cases or generate them fully automatically
belong in this group. This group also contains the test tools to create, set up and maintain
the test data. Tools that support the creation of test cases usually do this on the basis of a
coverage type. When the test basis is described in a formal notation, the test tools can
generate test cases automatically. In many cases, these test cases require further
processing. The tool provides support in this. The following tool types are in this group:

» Test design tool

+ Model-based testing tool.

Test design tool

These tools provide support when test design fechniques are used during the specification
of test cases. In particular when various possible combinations of input are used during
testing, these fools quickly add value.

Model-based testing tool

These tools offer support in the approach of Model-Based Testing. This is an approach in
which test cases are designed on the basis of a model of the test object (figure 60 “Model-
based testing”). These test cases are then used for automated execution on the test
object. One of the challenges in this approach is the creation of a formal model in which
the operation of (part of) the application is shown. Creating this model is work for humans.
When the model is complete, it can be read by a tool that handles the creation and
execution of test cases. This method is particularly valuable for (a combination of)
complex systems that have an unlimited number of possibilities. For more information on
Model-Based Testing, go to www.model-based-testing.org.

333



Requirement

) Functional
Model a— A — ;
design
Test tool Technical
= design
Test design

Test object

|

Test execution

Y

OK/NOK

Figure 60. Model-based testing.

In more detail

Word-processing and spreadsheet programs viewed as test tools

It is sometimes said that the test tools most often used by a tester are word-processing and
spreadsheet programs. At first sight this might seem a funny statement. But when looking
beyond the standard functionality of these tools, there might be some truth to it. These
tools can support a tester's work and in some cases even automate it. By simply copying
and pasting pieces of text, reuse in the creation of test scripts is simplified. The use of a
spreadsheet for the notation of the logical and physical test cases (in the different cells)
imposes a standard work method, which benefits interpretation by the various testers.
Furthermore most word-processing and spreadsheet programs contain so-called ‘macro’
functionalities to automate operations. In some cases, links can even be made to external
programs. This makes it possible to automate an activity like test execution (in a very light
form) with a word-processing or spreadsheet program.



Example

A batch system uses text files as input. The text files contain lines with various data. Each
line consists of 10 or more data elements separated by a comma. The text files are used to
test the batch system. Thus, testers must deliver their test cases in the format of the text
files. Reading and understanding the content of a text file is difficult. The meaning of a
data element depends on its position and value. Creating text files for testing is therefore
very complex. It was decided to create the text files in a spreadsheet program. By linking
each column to a position (and the meaning) in the text file, the testers can build the text
file quite easily. A text file is then created for the batch system with a click of the button
based on the various cells. See figure 61 “Use of a spreadsheet to create a text file” for a
schematic representation.

Input via spreadsheet:

b IET 122 led Bate Lag:_Fie (LR Q0 HEHS A Ha KA
10000000 0 10 1| 00010000007 - 22 060 0000102000007 - 45 3 MISC
100000007 - 0 2000107000008 - 76 0 5070 2000010300002 0:MsC

NN AN ITAI 350 0 1 EF] 1000 FE00. 20 0 0000 000 OOO0EE EEC T N a

11
119 1
1 1.1 1M1
200000000117 1) W0X10Z000002 9% 0 1 1000 1000 1000: 2000101000300 1)1 2010 20000601 0000CZ ML
00000002 310 1) X0M10A000003 100 1 101102 103 2000010000000 31| O 1
AR 3 1 WOMITAOO . 330 1 TR R A FINTHIINOTN: 32 0
200000043101 20102000005 35 0 1 1000, 1000 0 Z;0NC1000000° 35 O
200000005 3 1) 1 XN0XW102000006 | 44 0 1 1734 4B67 7E90 0000101000000 45 O
TR 3011 AOE XD 37 0 1 ] 1000 M P nan; 38 0 10T 10060 1000
200000007 | 4 11 1) 7000102000005 400 0 1 1000 1000 100 11000000, 41 @ ] 1000 1000 1000
2000003 4 10 1 A000103000003 54 0 1 4530 3MEL 35 0000101000000 53 O 1 976 B7E 455
AR 41 ANWNINANAMN. 470 1 100 0 30 F0irnmmn. 480 0 1 T A
000000032 11 2000010300001 60 0 I 14 3 2000101000000, 7D 0 1 100900 100
300000001 |3 101 00102000012 610 1 5 £ 5 2000101000000 75 O 20805

Output in text file

B Test inqulfilelel

Figure 61. Use of a spreadsheet to create a text file.

4.6.3.3 Tools for executing the test

These test tools are deployed on the critical path of testing: executing test scripts. Because
the tools focus on the product, they must, technically speaking, cooperate with the test
object and the associated hardware and software combination. The deployment of this
type of test tools is beneficial when the test work requires great accuracy and is relatively
routine. Examples are the frequently repeated execution of the same ftest and comparing
sizeable overviews with the aim of determining whether they are both the same. Also
activities requiring a lot of technical knowledge (e.g. security testing) or many testers (e.g.
testing with load profiles) can be executed by these test tools.

The following tool types are in this group:
 Automated test execution tool
* Performance, load and stress test tool



*  Monitoring tool

+ Code coverage tool
 Comparator

« Database manipulation tool.

Automated test execution tool

As the repeated testing of unchanged functionality (regression testing) is the most sizeable
and time-consuming part of the test, tools for automated test execution are aftractive to
many organizations. Regression testing starts as early as when a system is being built and
takes up anincreasing part of test work during the life cycle of the system (see figure 62
“Increasing share of regression testing during the lifecycle”). The automated execution of
such regression tests can save time. This is attractive not only to the tester, who is relieved
of repetitive and therefore boring daily activities, but also to the calculating test manager
who can save tens of percents.

Size of test work —..—»

e Rearession testing

New build Maintenance B —

Figure 62. Increasing share of regression testing during the lifecycle.

There are two variants of this test tool type:

« Tools that automate test execution via the user interface (GUI) of the application to be
tested. These are also called record & playback tools. A record & playback tool
records the test input (data and actions) and the expected result in a script. The tool
can play back the script at a later time, so that the test can be repeated easily
(please note that the term ‘script’ in this context should not be confused with the
manual test scripts that are part of the test specifications).

« Tools that automate test execution via a program interface. Examples of a program
interface are Application Programming Interface (API) or messages in XML format.
Often this tool type offers the possibility of mutating stored input data and provides
support when generating test input. Generally speaking, these tools are combined
with comparison fools to enable analysis of the test results.

The great advantage of automated test execution tools is that a test can be repeated by
automation at a later stage. This advantage is nullified if the test object is changed in such
a way that the automated script blocks during playback. Maintenance to the automated
scripts is necessary to use the tool efficiently. Such maintenance should not cost more than
the benefit yielded by automated test execution. Changes in the fest object must result in
a limited number of changes in the automated scripts. This is often the case in regression
testing, so that this tool type is extremely suitable for this test type.

The combination of tool, framework, test cases, automated test scripts, and recorded
results is called a test suite. The framework in a test suite is a library of reusable automated



scripts. Each script is in fact a small program. Use of the basic principles of modular
programming increases the maintainability of the scripts: each group of successive actions
that must be carried out repeatedly (for example moving to a certain screen in the
application) is best stored as a separate module. If something changes in the group of
activities (for example because of a different menu setup), then only one module will
need to be adapted. Modules exist at different levels of abstraction, varying from
activating or checking a specific object of the system to be tested, to carrying out a
business process.

Having such an architecture makes it possible for new test suites (for new systems) to be
created in a short period of time, because many of the necessary building blocks
(modules) are already present in the library. To construct a test suite in such a modular
fashion, expertise in the fields of testing and software development is required. The
required effort to adapt a test suite (and therefore also the framework) for a new release
must not outweigh the benefits of the use of the test suite. The main quality requirements
for a test suite are: maintainable, flexible, robust and reusable (see also [Fewster, 1991]).

Performance, load and stress test tool

Performance, load and stress test tools can load an information system by simulating
(large numbers of) users. The purpose of this type of testing is fo determine whether the
system continues to function correctly and at the required speeds under the expected
production load. To determine the possible causes of problems in the measured results,
these tools are often used in combination with monitoring tools.

Monitoring tool

Monitoring tools are used in the test process to gain insight into aspects like memory use,
CPU use, network load and performance. All kinds of data relating to resource use are
measured and saved and presented by means of a report. Configuring such tools is often
complex. However, often a maintenance department already has monitoring tools to
monitor the operational production environment, perhaps these can be used in the test
environment as well. In performance, load and stress fest tools, monitoring functionality is
often an integrated component.

Code coverage tool

Code coverage tools yield information on which parts of the program code were used
during a test. As such they provide practical support to measure the effect of the test
design techniques used. The measurements are made af the program or subsystem level.
In this way, it is established whether each program statement is executed at least once
during festing. The conclusions drawn must be investigated because:

» 100% coverage of the program statements does not guarantee by any means that no
defects remain! Compare section 14.2.2 “Coverage, coverage type and coverage
ratio”.

+ Atest designed to achieve 100% coverage of the functional specifications does not
generally automatically achieve 100% statement coverage.

Comparator

A comparator compares data and reports the differences. The latter must then be
analyzed manually to determine whether the differences coincide with expectations.
These tools are used to e.g.:

+ Compare test output against the fest output of the previous test

+ Compare a data collection before and after one or more test actions

« Compare the results of shadow production against the results of production.

337



Such tools are often an integrated part of record & playback tools. As an alternative, the
simple file compare functionality” or the revision functionality of a word processor can be
used.

Data base manipulation tool

Directly viewing and manipulating data in a database represent a powerful instrument for
testers. It enables them to execute checks to make sure whether a fest was truly
successful. This ool type is a vital part of the standard equipment of a tester. In addition to
retrieving data, the data can also be changed. This can be used to create start situations.
The manipulation language on which such tools are based is often SQLS.

4.6.3.4 Tools for shaping the test environment

In many cases, a production-like test environment is not available just like that. There are
many possibilities to use tools to shape the test environment in the right way:

e Simulator

» Stubs and drivers

» Test data tool

Simulator

A simulator simulates the operation of the environment of the (part of the) test object to
be tested. A simulator is used to test software for which it is too costly, dangerous or even
impossible o test the actual environment, e.g. testing the operating software for an
aircraft or nuclear reactor. The simulator communicates with the test object as if it were
the actual environment. It supplies input to the test object and receives its output.
Simulators are generally not standard and must be developed in parallel with the
development of the test object. The simulator in turn must also be tested.

Stubs and drivers

A system is generally tested in parts. A part may be a module or component. To test a
module that has relationships with modules not yet realized at an early stage, you need
stubbs and drivers that replace the missing modules. A stub is accessed from the module to
be tested, a driver accesses the module to be tested (see figure 63 “Stubs and drivers in
relation to module A and module B").

Module: A A Driver
Module: B Stub B

Figure 63. Stubs and drivers in relation to module A and module B

7 Often included by default in the operating system.

8 Structured Query Language.



Example

A reporting function that prints the payroll per employee is tested. In this function, the
payroll calculating program (tested earlier) is accessed. The test aims to select all
employees and print the payroll for every employee. However, preparing a test database
with all of the required data for the various payroll calculations can be a huge task. A stub
that returns a specific salary amount (e.g. based on the entered employee number) can
significantly reduce the test effort. Naturally, the relationship between the real programs
must always be tested once.

Test data tool

This tool helps build physical sets of test data. Using generators, random content can be
created on the basis of a file and/or database specification. This makes it possible to
create a sizeable set of test data relatively quickly, forinstance for a real-life test. The
‘rules’ to generate test data must be pre-defined in the tool. Think, for instance, of defining
collections with boundaries from which a selection can be made and relationships
between various data types (consistency rules).

4.6.4 Implementing test tools with a tool policy
Tool policy

The activities in the test process supported by a test tool and how this will be set up
depends on the tool policy pursued in the organization.

Definition

The tool policy describes how an organization handles the acquisition, implementation
and use of test tools in the various situations.

The tool policy is part of the test policy. The tool policy describes in a uniform manner what
the purpose of the implementation of test tools must be. The use of test tools is never an
objective in and of itself. The test tool is just a means to realize a specific objective in tferms
of time, money and/or quality. This is called the test tool objective. The tool policy also
describes the requirements, wishes and conditions (if any) defined for test tools. These can
be based on requirements, wishes and conditions defined in the test policy.

Furthermore, the tool policy describes the approach to be followed for the acquisition,
implementation and use of tools. As such, this part of the tool policy resembles a general
plan of approach, with the difference that it represents the basis for a long-term
investment. It has been written before: the deployment of tools usually only yields a return
on investment in the long term, which is why it must be governed by a policy. A tool policy
constitutes the basis on which the organization can base the use and implementation of
tools (in the future). It is not a one-off document that is archived. It must be updated and
adapted to new developments and insights continuously.

Example 1
A package supplier pursues a policy of acquiring building and test tools as much as
possible from one single supplier. This is incorporated into the tool policy, which contains a

list of preferred tool suppliers.

Example 2

339




The objective of an organization is fo migrate all systems to a new hardware and software
configuration within 3 years. The tool policy therefore specifies that new test tools can be
purchased only if they will also operate in the new hardware and software configuration.
The tool policy also states that the deployment of automated test execution must have a
ROI within 2 years. The reason is that systems will change during the migration to the new
hardware and software migration, meaning that the automated test execution will also
change.

Example 3

An organization listed on the stock exchange must comply with legal requirements. These
specify conditions with which the organization's systems must comply. These conditions
can only be tested with specific test tools, which in turn must comply with these conditions.
The list of test tools that comply is incorporated into the tool policy.

Example 4

A medium-sized organization has included a requirement in its tool policy that the
organization does not need to have knowledge concerning the deployment of load,
performance and stress test tools. This results in the fact that all performance tests are
executed by an external supplier.

Example 5

The tool policy of a power supplier states that every project must use the standard
available test management tool. Other tools must be open-source tools by preference.
Commercial tools can be bought only with permission from the IT manager.

4.6.4.1 Initiation phase (desired effects, commitment, preconditions)

The first phase in the life cycle model is the Initiation phase. This phase contains activities
that serve to obtain a univocal picture of the applicability of a test tool in a specific
situation. An important condition for applicability is the information in the tool policy. Based
on this, a well-considered decision concerning the deployment of and investment in test
tools is made. The main activity in the Initiation phase is the execution of the quick scan.
This provides information on the technical environment, the maturity of the test process,
and the management’s expectations concerning the deployment of test tools.
Characteristics of the quick scan are its limited lead fime and relatively low investment.
Various other activities are possible in addition to the quick scan. Think of product
presentations, a demo session, and visiting operational test tools in other organizations.

The quick scan

The quick scan is the instrument used to obtain specific information concerning the
implementation of test tools. It has not yet been established whether tools will be used and
which tools they should be. The aim of the quick scan is to collect and report information
with a relatively low effort (from 2 to 15 days duration) about the possible applicability of a
test tool in a specific situation. This results in a first (rough) version of the so-called business
case for the implementation of tools.

An important source of information during the quick scan is the interviews. These are
conducted with the main stakeholders in the test process. Examples are:

« Line manager (responsible for finance)

e Project manager

e Test manager

e Test consultant

+ Application expert

340



« Developer
+ Technical system administrator.

In addition to taking interviews, the quick scan also assesses various test products for their
usability in a test tool. It is investigated in how far existing products, such as test cases or
defect procedures, match the work method of test tools. Three aspects to determine the
applicability of a test tool are taken into consideration. These are:

« Test tool objectives:
The quick scan inventories to what extent the test tool objectives have been defined
and are in line with the objectives as described in the tool policy. Often those involved
only have expectations at that point, which may not prove realistic or franslatable to
concrete objectives. A precondition for the successful infroduction of test tools is a
client who is aware of the opportunities in the existing test process. These opportunities
are the basis for concrete improvement goals. Based on these improvement goals, the
objectives of the infroduction of a test tool are compiled and rendered as concrete as
possible. This makes it possible to render the achieved results measurable |ater.

* Infrastructure and test object:
The infrastructure (test environments, workplaces and possibly other tools) and the test
object play a vital part in determining the added value of a test tool. It must be
investigated whether a tool matches the test object and the technical environment.
This is a requirement in particular when the organization opts for automated test
execution. Another important aspect is to investigate whether there are special test
tools for the test object and, if so, what their possibilities are. This occurs often,
especially when the test object is a standard package.

» Test method of operation:
The implementation of tools as an efficiency measure adds value in particular when
the processes are repeatable and predictable. In addition the process method must
be supported by the tool — a test tool that serves to support defect management, for
instance, must fit into the process of defect management. Location is a key aspect.
When a test organization works in several physical locations, the tool will have to
support this as well. In the example of the tool for defect management, it must be
accessible from the various locations and all testers must work with the same
database.

The results of the interviews and the assessments of the various test products are used to
compile a first (rough) version of the business case. The most important aspects here are
the expected investments and the expected benefits. This is a mix of tangibles and
infangibles, which is why it is always very difficult to create a business case. Moreover,
many things are still unknown after the quick scan. For instance, no specific test tool has
yet been selected. A first version of the business case will therefore consist of the benefits
expected by the stakeholders and an estimate of the costs that must be incurred to use
the test products in a test tool. A business case can also consist of several scenarios
elaborating the deployment of different tool types.

In more detail

Tangible and intangible benéefits of tool deployment

Defining the business case for the deployment of test tools is always difficult. Partly
because fixed and variable costs are involved, and partly because tangible and
intangible benefits are involved. A reduction of the lead fime is an example of a tangible
benefit. But often there are also indirect benefits that do not have a direct bearing on
money. For instance, the test organization’s image will improve. It will radiate
professionalism. Users and maintenance organizations like to see demonstrations of

341



automated testing. The test organization is more often asked to help with a variety of
events. Employees will become more motivated. New career opportunities: technical
specialization and working with modern tools.

A report is created on the basis of the results of the interviews, the assessment of the
various test products, and the business case. In addition to the business case, the report
contains a conclusion focusing on the possible deployment of test tools. In addition to this
conclusion, it makes concrete recommendations for the follow-up process and which
steps must be taken by which people.

4.6.4.2 Implementation phase

The second phase in the model is the Implementation phase. Based on a plan of
approach that has to be created, all of the activities are executed and products are
realized that are necessary to use a test tool in an organization. The aim of the
Implementation phase is the implementation of a test tool, including the required
configuration. Another part of this phase is elaborating the preconditions to enable use of
the tool. Three sub-phases, associated with these three parts, can thus be distinguished:

1. Plan of approach

2. Setup preconditions

3. Test tool configuration.

The sub-phases are executed in parallel, making it possible to take account of findings
(e.g. due to advancing insights) from one sub-phase in the execution of another sub-
phase. Also this is time saving.

Sub-phase: Plan of approach

The quick scan provides information to create a first draft of the plan of approach. It
describes the first setup of the preconditions. We recommend beginning with a test tool
selection and the execution of the pilot. These are explicitly included as activities in the
plan. At the end of the pilot, the plan of approach can be updated and concretized. The
main aim of a plan of approach is the univocal definition of aspects like the objective,
activities, planning and deliverables. Examples of subjects listed in the plan of approach
are:

e Testtool objective

+ Preconditions

* Pilot approach

+ Configuration approach

» Activities

* Planning

» Products

» Organization.

Sub-phase: Setup preconditions

A number of preconditions must be met to enable the use of test tools. The main
precondition is clearly the presence of a structured test process in which the use of tools
may result in improvements. In addition to preconditions enabling deployment of the test
tool, there are preconditions that must be met to enable use of the tool by the testers. The
testers must be able to use the tool not just for current test work, but also for future test
work. The way in which the preconditions are elaborated may depend on what is
specified in the tool policy. Which preconditions must be met and how they must be set
up depends on the specific situation. However, a number of generally applicable
conditions can be identified:

+ Test tool selection

342



e Pilot

e Business case

«  Management commitment

* Maintenance in the line

+ Trained testers

« Structured test process

« Communication.

These are explained in further detail below.

Test tool selection

There is a large variety of test tools that can be deployed in a test process. The specific
environment and objectives determine which test tool(s) are most suitable in any situation.
The strategy (for the future) of the test tool supplier is also gaining importance in the
selection of a tool. Because an increasing number of test tools are integrated, selecting a
product often also means selecting a supplier. If no test tool is available in the test, a test
tool selection is done. Several approaches are available to this end that strongly resemble
a regular package selection. Various tools are assessed on the basis of a pre-defined list of
criteria. The criteria depend on the tool type for which the test tool selection is done. A list
of example criteria can be found on www.tmap.net under “test tool selection criteria”.

Pilot

The intfroduction of a test tool is not a standard process that can be done the same way in
every situation. Every test has its own pitfalls. Often, many people have very high
expectations from test tools. People are usually not aware that the deployment of tools
requires an investment, the benefits of which do not usually become visible in the short
term. Therefore one must proceed very carefully when implementing tools to avoid losing
out to the difference between expectations and reality. By starting with a pilot project,
insight info the added value of a test tool is provided in a relatively limited environment
and in the relatively short term. The tool can be used on a small scale in a pilot, for
example by part of the team or by testing a specific function. This makes it possible to
evaluate the feasibility of the test tool aims. With a limited effort, insight thus is provided
into whether the test tool is technically feasible, whether it matches the current test
method, and the expected costs and benefits.

In more detail

The dip in the performance curve or why a pilot is necessary

What are the consequences for the employees of infroducing test toolsg This can be
explained with figure 64 “Performance dip in the introduction of a new work method”. The
figure describes the situation in which an organization wants to improve its performance in
a certain field. Current performance is at level M1. The organization wishes to perform at
level M4. A new work method is infroduced to achieve this.

343



o

Parformance-

Figure 64. Performance dip in the introduction of a new work method.

The figure shows how the infroduction of a new work method initially causes a dip in the
performance curve. The path to move from performing at level M1 to performing at level
M4 is not a straight upward line. A new work method must first be learned and, in most
cases, adapted to the specific situation. If the stakeholders are not aware that the
performance level will drop initially, there is a danger of measuring too early. The (lower)
benefits of level 2 are then measured. It is concluded that this is not the right work method

and another solution must be found. Often, the use of test tools is interrupted and the tool
is shelved (also known as “shelf ware™).

We recommend measuring the benefits of the new work method when the rising line
compared to level M1 is started. In this example, this is point M3. It is an assessment that is
difficult to make. When, in the introduction of a new work method, the organization also
opfts for a long chance process, the danger of overly early measurement and drawing the
wrong conclusions is even greater. This is one of the reasons for using a short-term pilot. The
dip will certainly show up during the pilot, but the dip in a “real production situation” will be

smaller (and at least more easily predictable) based on the learning points and findings of
the pilot.

Business case

The first version of the business case created in the Initiation phase is elaborated further.
The figures in the business case can now be concrete. When specifying the costs, the fixed
and variable costs must be taken into account. Fixed costs may be: hardware, licenses,
installation, maintenance and training. Variable costs may be: test script creation,
execution of test scripts, analysis of results, test script maintenance and training.

Management commitment

Even when the testing is sufficiently mature to use tools, it is not always certain that the
desired benefits are realized. One of the main success factors for the deployment of test
tools is the management’s commitment. The management must be made aware that the
use of the tool is an investment that usually yields an ROl in the longer term in terms of
faster and/or better testing. If this awareness is inadequate, there is a great risk that the
tool is taken out of production after the very first disappointment. This is even more tfrue
when the tool is deployed for the first time in a project with a fixed end date. If the project
experiences time pressure, there is a great risk that the tool is taken out of production.



Maintenance in the line

An operational test tool may consist of a large number of items: modules in the fest tool,
framework, test data files, documents for use and maintenance, etc. All of these items
must be maintained to enable reuse in the future. Test tool deployment only pays back
over longer periods and therefore often across projects. By assigning the maintenance of
tools to the line, knowledge retention is guaranteed.

Trained testers

The testers must be trained when the test team has not yet worked with a tool. Both the
tool and working with it are new for the test team. The testers must acquire knowledge to
ensure good use and maintenance. Training staff thus focuses on two aspects: gaining
knowledge of the tool and of the use of the tool in the test process.

Structured test process

The deployment of test tools focuses on improving the test process in terms of money, time
and quality. As such, it contributes to improving the efficiency of the test process. Before a
test process can be made more efficient, it must be executed in a controlled manner. It
may be necessary to define addifional activities in the context of controlling the test
process. For instance the use of test design tfechniques (see chapter 3 “Website”), which
also increases the traceability of the test process. The measures to be implemented are
highly situation-specific. We recommend using an improvement model (e.g. TPI) when
implementing the improvement.

Communication

When the test feam and the rest of the organization are not familiar with working with test
tools, the aspect of communication requires extra attention. The stakeholders are informed
of the plans in the field of test tooling as early on as possible. What are the plans, why are
they executed, who is executing them, what are the planned results, and when will they
be realized. We strongly recommend using the available communication resources for
such communication. For instance a regular work meeting, a newsletter and the intranet.
When these opftions are not available, information sessions should be organized.

Test tool configuration

In many cases, the test tools support a specific work method. Often this work method
deviates from the situation in the organization that will use the tool. The tool must therefore
be configured (see figure 65 “Configuration of the test tool”). Test tool configuration to
ensure thatitis in line with the organization is customization work. It involves activities like
sefting standard tables, defining a workflow, or programming a framework for automated
test execution. The basis for the configuration is formed by the three aspects discussed in
the Initiation phase. These are test tool objectives, infrastructure, and test object and test
method of operation. A configuration plan is created on this basis. It describes concretely
what and how the tool will be configured. This is vital to maintain the tool and its specific
configuration in the future. The tool is then configured on the basis of the plan. We
recommend doing this in collaboration with the future administrator of the tool, or asking
him to do this. This ensures the first knowledge transfer. During the tool configuration, the
configuration must also be tested. Any defects showing up in this test can be solved or
incorporated in the configuration plan as known problems during completion. When a
new version of the tool is developed, it can be examined whether these problems can be
solved then.

345



Test tool Infrastructure Test method
objectives and test object of operation

Configuration
plan

Configuration

Completion

Figure 65. Configuration of the test tool.

4643 Operation phase (use)

The third phase in the model is the Operation phase. This phase starts when the test tool is
taken into production by the test team. To ensure that the test tool can continue to be
used, maintenance must be executed. The use of the test tool will be part of the regular
test process. This means that new activities must be executed by both the testers and the
test manager. This also means that these people must be able to use and maintain the test
tool the right way. The tool must have a place in the regular test process. When using the
test tool, data must be collected on its functioning. Does its functionality fit in with the
overall work method? If this is not the case, it must be examined whether this can be
changed. The same applies fo the evaluation of the test tool aims defined in the Initiation
phase. It must be checked periodically whether the aims are still realized with the
implementation of the tool.

One of the main principles in the use of test tools is the aspect of maintainability. The
actual maintenance occurs in the Operation phase. When automated execution is used,
issues like new releases, changes and incidents in the test object will have an impact on
the test suite. But new releases of the test tool itself may also result in changes. These can
be implemented, if necessary, after which the test tool is ready for use again.

Three types of maintenance can be distinguished:

» Technical maintenance
The installation of the test tool (on the server or workplaces), implementation of new
versions or patches, solving technical incidents, etc. Often the maintenance
department that also handles the technical maintenance of other applications in an
organization is responsible for this.

+ Operational maintenance
Enabling users to work with the test tool. This may involve issuing authorizations or
configuring project-specific components (e.g. database). Often the maintenance
department that also handles the technical maintenance of the tool may be
responsible for this. Another option is to allocate the maintenance within the test
project itself or fo a permanent test organization.

* Functional maintenance
Enabling users to work ‘well” with the test tool. This means creating work instructions,
manuals for the organization’s own work method, procedures, templates, etc. It is
important that functional maintenance does not maintain the functionality of the tool

346



itself — this is the supplier’s responsibility. The test project itself or a permanent test
organization may be responsible for this aspect.

The three maintenance types have separate responsibilities, but clearly they must
collaborate as well. For instance, when a new version of the test tool becomes available,
functional maintenance assesses its added value and impact. Functional maintenance
then determines whether the new version must be infroduced and when. Functional
maintenance then directs fechnical maintenance to handle the implementation.

4.7 Defects management

4.7.1 Infroduction

Many people see the finding of defects as the purpose of testing. While it should be clear
that the purpose of festing is much more, i.e. the provision of information and advice
concerning risks and quality, the fact remains that finding defects is one of the most
important activities of testing.

A defect is also termed a ‘fault’. Confusion sometimes arises concerning the various ferms,
such as errors, faults and failures. In this book, the following distinction is made:
. Error
Human mistake; this action takes place prior to any faults and/or failures
. Fault
Results from an error. Fault is the view from inside the system. Fault is the state where
mistake or error exists. Developers will see the fault
. Failure
When the system is performing differently from the required behaviour, from a
viewpoint outside the system. Users will see the failure.

Within TMap, the following definition of defect is used:

Definition

A defect (fault) is the result of an error residing in the code or document.

A defect can be found in several objects, like the test basis, the system that is being
tested, the test infrastructure, etc.

Testers should realize that they are a) judging another’s work, and b) that the final product
is the result of cooperation between all parties. It is more considerate towards the other
party to find a discrepancy between what the software does and what the tester expects,
based on the available information, than if the tester immediately exclaims that he has
caught the developer out in a mistake. The lafter has a polarizing effect and quickly
becomes a discussion on who has made the mistake, instead of a discussion on how best
to solve the defect. In some cases, the testers employ terms such as “issues”, “problems” or
“findings” rather than defects. The tester should adopt as neutral an attitude as possible in
connection with defects. Another good reason for adopting this aftitude is that the cause
of the defect often turns out not to lie with the developer, but with the tester himself. In a
situation in which developers and testers stand opposite each other instead of side by
side, a number of unjustified defect reports can destroy the testers’ credibility entirely.

Administering and monitoring the defects also involves the solving of them. This is actually

a project matter and not specifically a matter for the testers, although testers have the
greatest involvement here. Good administration should be able to monitor the life cycle of

347




a defect and also deliver various overviews, which are used, among other things, to make
well-founded decisions on quality. This management is sometimes assigned to a
dedicated role: defects administrator.

From within the test process, the testers are the submitters of defects, and they check the
solutions of these. The test manager communicates with the other parties concerning (the
handling of) the defects. The choice may also be made to place this task within a
separate role in the team: the intermediary. The purpose of this is to channel the defects
and the associated solutions effectively. In this regard, the intermediary maintains external
contacts at the level of staff doing the actual work. This person has an overview of all the
defects and acts as a relay and inspection post for the defects on the one hand, and the
solutions on the other. Advantages of this are that the quality of the defects and solutions
is monitored better and that communication is sfreamlined.

There are great advantages to be gained in organizing one single defects administration
and defects procedure for the entire project or the entire line department. All the parties
involved — developers, users, testers, QA people, etc. can deposit both their defects and
solutions here. Communication on the handling of the defects is thus considerably
simplified. A centfral administration also offers extra possibilities of obtaining information.
The authorizations are a point to note here; it should not be possible for unauthorized
persons to be able to amend or close defects by this means.

4.7.2 Finding a defect

Defects may be found practically throughout the entire test process. The emphasis,
however, is on the phases of Preparation, Specification and Execution. Since, in the
Preparation and Specification phases, the test object is normally not yet used, in these
phases the testers find defects in the test basis. During the Execution phase, the testers find
differences between the actual and the expected operation of the test object. The cause
of these defects, however, may sfill lie within the test basis.

The steps that the tester should perform when a defect is found are described below:

+ Collect proof

+ Reproduce the defect

* Check for your own mistakes

+ Determine the suspected external cause

» Isolate the cause (optional)

+ Generdlize the defect

+  Compare with other defects

*  Write a defect report

* Haveitreviewed.
The steps are in a general order of execution, but it is entirely possible to carry out certain
steps in another sequence or in parallel. If, for example, the tester immediately sees that
the defect was found previously in the same test, the rest of the steps can be skipped.

4.7.2.1 Collect proof

At a certain point, the test object produces a response other than the tester expects, or
the tester finds that the test basis contains an ambiguity, inconsistency or omission: a
defect. The first step is to establish proof of this anomaly. This can be done during the test
execution, for example, by making a screen dump or a memory dump, prinfing the
output, making a copy of the database content or taking notes.

The tester should also look at other places where the result of the anomaly could be
visible. He could do this, for example, in the case of an unexpected result, by using an Edit

348



function to see how the data is stored in the database and a View function to see how it is
shown to the user.

If the defect concerns a part of the test basis, other related parts of the test basis should
be examined.

4.7.2.2 Reproduce the defect

When a defect is found during test execution, the next step is to see whether it can be
reproduced by executing the test case once more. The tester is now on guard for deviant
system behaviour. Besides, executing the test again helps with recognizing any test
execution errors. If the defect is reproducible, the tester contfinues with the subsequent
steps. If the defect is not reproducible and it is not suspected to be a test execution error,
things become more difficult. The tester executes the test case again. He then indicates
clearly in the defect report that the defect is not reproducible or that it occurs in 2 out of 3
cases. There is a real chance that the developers will spend little or no time on a non-
reproducible defect. However, the point of submitting it as a defect is that this builds a
history of non-reproducible defects. If a non-reproducible defect occurs often, it may be
expected to occur regularly in production as well and so must be solved.

Example

During a system test, the system crashed in a non-reproducible way a couple of times a
day. The test team reported this each time in a defect report, but the development team
was under pressure of fime, paid no attention to this defect, and dismissed it as an
instability of the development package used. By reporting the large number of non-
reproducible defects and indicating that a negative release recommendation would
result, they were finally persuaded. Within a relatively short time, they found the cause (a
programming mistake) and solved the problem.

In more detail

In some cases, such as with performance tests and testing of batch software, it costs a
disproportionate amount of time to execute the test again. In those cases, the test to see
whether the defect is reproducible is not repeated.

4.7.2.3 Check for your own mistakes

The tester looks for the possible cause of the defect, first searching for a possible internal
cause. The defect may have been caused, for example, by an errorin:

e The test specification or (cenfral) starting point

e The test environment or test tools

+ The test execution

¢ The assessment of the test results.

The tester should also allow for the fact that the test results may be distorted by the results
of another test by a fellow tester.

If the cause is internal, the tester should solve this, or have it solved, for example by
amending the test specification. Subsequently, the tester repeats the test case, whetherin
the same testing session or in the following one.

In more detail

Test environments and test tools usually come under the management of the testers.

Defects in these that can be solved within the team belong o the internal defects, and
those originating from outside the team are external defects.

349



4.7.2.4 Determine the suspected external cause

If the cause does not lie with the testing ifself, the search has to widen externally. External

causes may be, for example:

e Test basis

« Test object (software, but also documentation such as user manuals or AO
procedures)

+ Test environment and test tools.

The tester should discover the cause as far as possible, as this would help in determining

who should solve the defect and later with discerning quality frends.

Because the tester compares his test case against the test object, there is the inclination in
the event of an anomaly to point fo the test object as the primary cause. However, the
tester should look further: perhaps the cause lies with the test basise Are there perhaps
inconsistencies in the various forms of test basise

As well as the formal test basis (such as e.g. the functional design or the requirements), the
tester regularly uses other, less tangible forms of test basis. These may include the mutual
consistency of the screens and user interface, the comparison with previous releases or
competing products, or the expectations of the users. See also section 6.5 “Preparation
Phase”. In describing a defect, it is thus important to indicate which different form of test
basis is used, and whether or not the test object corresponds with the formally described
test basis, such as the requirements or the functional design. If the test object and the
formal test basis correspond, the cause of the defect is an inconsistency between the
informal and formal test basis and not the test object.

Example

During an exploratory test, the tester discovers that the position of the operating buttons
vary on many screens. Further investigation shows that the cause lies with the screen
designs and not with the programming. The tester submits the defect, citing the test basis
as the cause.

An external defect is always managed formally. This may be in the form of the defect
report and defects procedure described in the sections below. Where reviews are
concerned, aless in-depth form may be chosen in which the defects are grouped into a
review document and passed to the defect solver; see also section 4.12 “Evaluation
Techniques”.

4.7.2.5 Isolate the cause (optional)

While the suspected cause is often apparent, in the case of a defect in the test object or
the test environment, it is often insufficiently clear to the defect solver. The tester therefore
looks af surrounding test cases, both the ones that have been carried out successfully and
the ones that have not. He also makes variations where necessary to the test case and
executes it again, which often results in indicating a more exact cause or allows further
specification of the circumstances in which the defect occurs. This step is optional, since it
lies on the boundary of how far the tester should go in respect of development in seeking
the cause of a defect. It is important to make agreements with the developer on this
beforehand. This can avoid discussions on extra analysis work later on, when test execution
is on the critical path of the project.

350



4.7.2.6 Generalize the defect

If the cause appears sufficiently clear, the tester considers whether there are any other
places where the defect could occur. With test object defects, the tester may execute
similar test cases in other places in the test object. This should be done in consultation with
the other testers, to prevent these tests from disrupting those of his colleagues.

With test basis defects, too, the tester looks at similar places in the test basis (“In the
functional design, the check for overlapping periods for function A has been wrongly
specified. What is the situation as regards other functions that have this same check?2”).

Example

During a Friday-afternoon test, the parallel changing of the same item by two users in
function X produced a defect. Further testing on other functions showed that the multi-
user mechanism had been wrongly built in structurally.

The tester need not aim for completeness here, but should be able to provide an
impression of the size and severity of the defect. If the defect is structural, it is up to the
defect solver to solve it structurally. This step also has the purpose of building up as good a
picture as possible of the damage that the defect could cause in production.

4.7.2.7 Compare with other defects

Before the tester writes the defect report, he looks to see whether the defect has been
found previously. This may have been done in the same version of the test object by a
fellow tester from within a different test. It is also possible for the defect to have been
reported in an earlier release. The tester consults with the defects administration, his fellow
testers, the test manager, defects administrator or the infermediary to find out.

There are a number of possibilities:

« The defect was found in the same part of the current release.

The defect need not be submitted. The test case in the test execution report may
refer to the already existing defect.

* Asimilar defect has already been found in another part of the current release.
The defect should be submitted and should contain a reference to the other
defect.

« The defect has already been found in the same part of the previous release.

If the old defect was to have been solved for this release, it should be reopened or
resubmitted with reference to the old defect, depending on the agreement. If the
old defect is still open, the tester need not submit a new one.

Tips

* The test manager, defects administrator or infermediary would be well advised to send
frequent overviews of found defects to the testers. This keeps the testers abreast of
found defects and prompts them to look within their own test for similar defects.
Alternatively, the testers could regularly consult the defects administration concerning
found defects.

* It may also be agreed that the testers do not look at duplicate defects, to avoid
disrupting the progress of the test execution. Checking for duplicate defects is then
done by the intermediary, who would be empowered to combine duplicate defects.
In cases of doubt, the infermediary should of course consult with the testers involved.

351



4.7.2.8 Write a defect report

The tester documents the defect in the defects administration by means of a defect
report. In this, he describes the defect and completes the necessary fields of the report.
The description of the defect should be clear, unambiguous and to the point. The tone
should remain neutral, and the tester should come across as impartial, being conscious of
the fact that he is delivering bad news. Sarcasm, cynicism and exaggeration are obviously
to be avoided.

Ideally, the tester makes clear what the consequences are in the event of the defect not
being solved, or what the damage might be in production. This determines the chances of
the defect being solved after all. In some cases, the damage is very clear (“Invoices are
wrongly calculated”) and little explanation is necessary; in other cases, it is less clear
(“Wrong use of color in screens”) and the tester should clearly indicate what the
consequences could be (“Deviation from business standards means that the External
Communication department may obstruct release of the application”). Otherwise, it is by
no means always possible for the tester to estimate the potential damage, as he lacks the
necessary knowledge. The final responsibility for estimating the damage lies with (the
representatives of) the users and the client in the defects consultation, which is discussed
later.

A difficult question is always how much information the description should contain. The
guideline for this is that the defect solver should be reasonably able to solve the defect
without further explanation from the tester.

In more detail

‘Reasonably’ in the above sentence is a difficult concept. The developer would prefer the
tester to indicate which statement is wrong in the software. However, this is debugging
and comes under the responsibility of the developer. The situation should be avoided in
which the tester regularly sits with the programmer to search together for the cause of the
defect. This indicates poorly written defects rather than collaborative testing. The tester is
at that point no longer involved in testing operations, as the test manager expects of him.
If this happens regularly, it will render the plan of the test process unmanageabile.

In some cases, the tester finds many small defects in a particular part, e.g. a screen. The
inclination is then to keep the administration simple by grouping all these defects intfo one
collective defect report. There is sometimes pressure from the developers to do this, either
for the same reason or to make the number of defects appear lower. This is rarely
advisable. The chances are that, out of such a collection, a number of defects will be
solved in the subsequent release, a number will be solved in the release following, and a
number will not be solved at all. Following and monitoring such a collective defect thus
becomes an administrative nightmare.

4.7.2.9 Have it reviewed

Before the defect formally enters the defects procedure, the tester has the report
reviewed for completeness, accuracy and tone. This may be done by a fellow tester, the
test manager, defects administrator or the intfermediary. After processing their comments,
the defect is formally submitted.

For more information on handling a defect, see [Black, 2004].

4.7.3 Defect report

A defect report is more than just a description of the defect. Other details on the defect
need to be established (e.g. version of the test object, name of the tester). In order to do
this in a structured manner, a defect report is often divided into several ‘fields’, in which

352



the various details can be laid down that are necessary for the management of the
defect and for obtaining meaningful information from the administration. The most
important reasons for including separate fields, rather than one large free-text field, are:

« The fields compel the defect information to be entered as completely as possible

« ltis possible to create reports on selections of defects.

This way it is, for example, easy to select all the outstanding defects, all the defects with
the test environment as a cause or all the defects in a particular part of the test object.

Defect reports are almost impossible now without automated support. This may be a
simple spreadsheet or database package, but there are also various freeware or
commercial tools available. The latter group of tools often has the advantage that the
defects administration is infegrated with testware management and plan and progress
moniftoring. Attention should be paid to the matter of authorizations with the tools. It should
not be possible for a developer to change or close a tester’s defect, but it should be
possible for the developer to add a solution to the defect.

Tip

If testers and other parties are geographically far removed from each other, as is often the
case with outsourcing or offshoring, it is advisable to purchase a web-enabled defects
tool. This allows all the parties to directly view the current status of the defects
administration and significantly eases communication on defects.

In more detail

In some organizations, the defects administration is placed within the incidents registration
system of the production systems. While this is possible, such a system contains many more
information fields than are necessary for a defect. Sometimes this can be adjusted, but
sometimes the testers have to learn to deal with the complex system and ignore all the
superfluous fields on the screen. This requires decidedly more training fime and involves a
greater likelihood of incorrect input of defects than with a standard defects administration.

If the defects are stored in an automated administration, a range of reports can be
generated. These are very useful for observing certain trends concerning the quality of the
test object and the progress of the test process as early as possible. For example,
ascertaining that the majority of the defects relates to (a part of) the functional design, or
that the defects are concentrated in the screen handling. Such information can be used
again for purposes of fimely intervention and adopting measures.

The success of the defects administration is determined to a significant degree by the
testers’ discipline in completing the fields. To this end, the testers should first be sure of the
content of each field and how it should be filled in. Particularly in the beginning, there is a
need for guidance and monitoring of the completion of defect reports. This is usually a role
for the test manager, defects administrator or infermediary, and forms part of the step
“Have it reviewed".

The uniformity and consistency of a defect report can be improved by restricting the
possible input values for the fields, instead of using free-text boxes. For example, for the
cause of a defect, a choice can be made between test basis, test object or test
environment. This prevents all kinds of synonyms from being entered (‘software’, ‘code’,
‘programming’, ‘program’, ‘component’) that severely obstruct or render impossible any
later selection of cause of defect.

353



First, a description is given below of what a defect report should minimally contain.
Subsequently, various recommendations are given as regards expanding on this.

4.7.3.1 Minimum fields in a defect report

A defect report contains the following fields at minimum:

Project or system name

The name of the (test) project or of the system under test.

Unique identification of the defect

A unique identity, usually in the form of a (serial) number of the defect report, for

purposes of management and fracking progress.

Brief characterization

A brief characterization of the defect in a limited number of words, maximum one

sentence that preferably also clearly indicates the consequence of the defect. This

characterization is printed in defects overviews and makes the defect more

communicable.

Submitter

The name of the individual who has submitted the defect.

Identification of phase/test level

The phase or test level in which the defect was found, e.g. design, development,

development test, system test, acceptance test orimplementation.

Severity

The severity category proposed by the tester. This categorization reflects the damage

to the business operations. For example:

° Production-obstructive: involves (high) costs, e.g. because the defect will shut down
operations when the system goes into production

° Severe: (less) costs involved, e.g. because the user has to rework or add items
manually

° Disruptive: little or no costs involved, e.g. chopping of alphanumeric data on the
screen or issues relating to user-friendliness

° Cosmetic: wrong layout (position of fields; colors) which is not a problem for the
external client, but can be disturbing to the internal employee.

Priority

The priority of the solution proposed by the tester. Possible classification:
Immediate reworking required, e.g. a patch available within 48 hours that
(temporarily) solves the problem. The test process or the current business operations
(if it concerns a defect from production) are seriously obstructed

° Reworking required within the current release. The current process can confinue
with work-arounds, if necessary, but production should not be saddled with this
problem

° Reworking required eventually, but is only required to be available in a subsequent
release. The problem (currently) does not arise in production, or else the damage is
slight.

In more detail

At first sight, it does not appear important to make a distinction between severity and
priority. These usually run in sync, so that a high level of severity implies a high priority of
solving. However, this is not always the case and that is the reason for distinguishing
both categories. The following examples illustrate this:

1) With a new release, the internally allocated nomenclature in the software has
been amended. The user will not be aware of this, but the automated test suite will
suddenly stop working. This is a defect of low severity, but test-obstructive and
therefore of very high priority.

354



2) The user may find a particular defect so disturbing that it may not be allowed to
occur in production. This may be, for example, a typo in a letter to a customer. This,
too, is a defect of low severity that nevertheless needs to be reworked before
going into production.

3) A potentially very serious defect, e.g. the crashing of the application with resulting
loss of data, only occurs in very specific circumstances that do not arise often. A
work-around is available. The severity level is high, but the priority may be lowered
because of the work-around.

Cause
The tester indicates where he believes the cause to lie, for example:

TB: test basis (requirements, specifications)

S: software

DOC: documentation

TIS: technical infrastructure.
Identification of the test object
The (part of the) fest object to which the defect relates should be indicated in this
column. Parts of the test object may be e.g. object parts, functions or screens. Further
detail may be supplied optionally by splitting the field into several fields, so that e.g.
subsystem and function can be entered. The version number or version date of the test
object is also stafted.
Test specification
A reference to the test case to which the defect relates, with as much relevance to
the test basis as possible.
Description of the defect
The stated defect should be described as far as possible.
Appendices
In the event that clarification or proof is necessary, appendices are added. An
appendix is in paper form, such as a screen printout or an overview, or a (reference fo
an) electronic file.
Defect solver
The name of the individual who is solving the defect, has solved it or has rejected it.
Notes on the solution
The defect solver explains the chosen solution (or reason for rejection) of the defect.
Solved in product
Identification of the product, including version number, in which the defect should be
solved.
Status + date
The various stages of the defect’s life cycle are managed, up to and including
retesting. This is necessary in order to monitor the defect. At its simplest, the status levels
of “New”, “In process”, “Postponed”, “Rejected”, “Solved”, “Retesting” and “Done”
are used. The status also displays the date.

4.7.3.2 Possible extensions

Besides the above fields, various other fields may be added to the defect report. The
advantages of including one or more of the fields below are better management and
more insight into the quality and trends. The disadvantages are the exira administration
and complexity. Experience shows that the advantages far outweigh the disadvantages in
medium-sized and big tests or in cases in which a lot of communication on the defects
between various parties is necessary.

Identification of the test environment
The test environment used, with identification of the starting situation used.

355



e |dentification of the test basis
The test basis used: name of the fest basis document, including version number,
supplemented if necessary with specific-requirement "number.
e Provisional severity category
Provisional: the severity category proposed by the tester.
e Provisional priority
Provisional: the priority of solution proposed by the tester.
e Provisional cause
Provisional: the cause of the defect as estimated by the tester.
e Quality characteristic
The quality characteristic established by the tester, to which the defect relates.

In connection with the solution:

e Definitive severity
The definite category of severity as determined by the defects consultation.

e Definitive priority
The definite priority of solution as determined by the defects consultation.

e Definitive cause
The definite cause of the defect as determined by the defects consultation. Besides
the categories mentioned for the minimum defect report, the category of “Testing” is
added here.

e Deadline orrelease for required solution
A date or product release is set, by which the defect should be solved.

In connection with retesting:

e Refester
The name of the tester who carries out the retest.

e [dentification of the test environment
The test environment used, with identification of the starting point used.

e |dentification of test basis
The test basis used: name of the test basis document, including version “number, if
necessary supplemented with specific-requirement number.

e |dentification of test object
The (part of the) test object that was retested. The version number or version date of
the test object is also stated.

In addition, test, defects consultation, retest and comments fields may be added, with
which extra information may be optionally supplied, e.g. on corresponding defects or the
identification of the change proposal by which the handling of the defect is brought
within another procedure.

4.7.4 Procedure
When a defect is taken into the administration, it enters the defects procedure.

Progress of the solving of defects is discussed in a periodic defects consultation. During the
preparation and specifying of tests, this consultation is usually held once or twice a week.
During test execution, it often increases to once a day. Participants in the consultation are
representatives of the parties who submit and/or deal with the defects. From within the
testing, this is the test manager, defects administrator or the intermediary. Sometimes a
tester is invited to explain a defect. Other parties may be the user organization, functional
management, system development and system management. The defects consultation is
also sometimes combined with the handling of the change proposals in, for example, a
Change Control Board.

356



Tips

e Conference call
If the parties are spread over different locations (around the world), this is no reason
not to carry out a defects consultation. Conference calls or video conferencing
facilitate this.

« Ensure that each participant is well informed of how the defects procedure works and
what his or her tasks and responsibilities are. For example, who updates the status of
the defects following the defects consultation?

In order of priority, the participants discuss each new defect and decide whether it should
be solved, and if so, by whom. In this consultation, the correctness, cause, priority and
severity of the defects, as well as the costs of solving them, are discussed. A familiar
humorous reaction of developers in this connection is “It's a feature, not a bug”. The
representative of the testing also has the job of ensuring that the importance of a defect
(severity and priority) becomes sufficiently clear to all the parties. The consultation may
also request the submitter of the defect to provide additional information or carry out
further investigation. The participants in the consultation determine, after carrying out the
necessary discussions, the definitive values for cause, priority and severity of a defect.

If the defects consultation agrees that it is a valid defect and the costs of solving it are
acceptable, the defect is assigned to a defect solver. If the consultation agrees that it is
not a valid defect or that the costs, lead-time or regression risks of solving it are too high, it
is rejected. A valid defect that is nevertheless rejected is also known as a ‘known error’. In
the event of rejection, it may be decided to submit the defect via another channel as a
formal change proposal or to devise a procedural solution. Examples of procedural
solutions are notes in the help text, instructions to the helpdesk assistants or amendment to
the AO procedures. If the consultation does not agree, then the defect is escalated fo the
decision forum. Representatives of the parties with decision-making powers sit in this forum,
such as the client and project manager, who decide on whether or not (and when) the
defect is to be solved. The decision forum is not necessarily an independent consultation,
but is often the project management meeting or the project board meeting.

The diagram below shows the relationship between the defects consultation and decision
forum:

defects
consultation

> Yes
agree:
g rework,
No reject
decision
forum

Figure 66. Defects procedure.

The defect solver investigates the defect and solves it. Or it may emerge that the defect
has been incorrectly identified as such (a testing mistake) or should be handled by
another defect solver. In the latter cases, the defect goes back for discussion. If it is solved,
it can be transferred at any time to the test environment to be (re)tested. The tester,
preferably the original submitter, carries out the test and checks whether the defect is
solved. If so, the defect is closed. If it appears that the defect is not (adequately) solved,
then ifs status is reset and it again undergoes the defects procedure.

357



The retesting of the defect is an essential step in order to be able to close it. It is
unacceptable for the defect solver to solve the defect, test it himself and then close it.
Checking whether the defect is solved is the task of the submitter (or his replacement).

In more detail

The fime required for researching, submitting, processing, solving and retesting a defect is
considerable. Purely administrative and management tasks alone take between one and
two hours. This is an important reason to require that the test object be of sufficient quality
to enter a test. The pretest is aimed at checking this testability.

Figure 67 shows the life cycle of a defect according to the above procedure, in which the
texts in the rectangles show the status of the defect. The diamonds refer to the actors. The
dotted line from “Postponed” to "Allocated” means that the defect is postponed in the
current release, but should be solved in a future release.

New
' - |
DC Analysis
A v 7 y ¥
Allocated - Postponed Rejected irer seliflan
Not @
solved
Solved

Legend
= Status
In retest <> = Person/consultation
that amends status

DC = Defects consultation
TM = Test manager

Retest
not ok

I

Retest ok

Figure 67. Life cycle of a defect.
4.8 Development tests

48.1 Infroduction

To allow them to perform at their best in the market, users of information systems demand
ever-faster delivery of the systems as well as more flexibility. Development methods are
increasingly geared fo follow changing requirements closely, even in the midst of a
project. The architectures and development environments that make all this possible are

358



becoming more complex and bigger in scale. This changes the development
requirements.

The growing demand on the developer: to deliver the right quality, on time and right first
fime!

In addition to increased knowledge of development languages, methods, environments
and architectures, this also calls for deeper knowledge of quality delivery. Difficult
questions in this connection are: what is the quality level required for the client, and how
can this be realized and demonstrated through testing? Individual interpretation of the
required quality and random tfesting provide no guarantee of eventual success.
Predictable and proven quality of the delivered software gives the project or the
department the opportunity to organize the subsequent test levels, such as the system test
and the acceptance test, more efficiently. A reduction in the number of redeliveries and
retests in those test levels, in particular, delivers significant time savings. In order to realize
the higher quality of software, increasingly high demands are placed on the development
tests, and development testing is fast becoming a mature part of the entire testing
process.

Soon the time will be over that barely any requirements are being set as regards the
development tests, and the (increasingly mature) system and acceptance tests are being
relied upon to rectify the lack of quality for going into production. The resulfing lengthy
and costly reworking and retesting cycles have become unacceptable fo most
organizations.

This section discusses the development tests, makes a comparison with the other test levels
and describes specific test tools for development testing. Various quality measures are also
discussed that can be used in, or can influence, the development tests. An important
measure here is the concept of selected quality. After that, this section describes the
activities of development testing according to the TMap life cycle model.

While developers and development testers are a logical target group for this chapter, they

should not expect, after reading this one chapter, to know all about how to organize and

execute development tests. The target groups of this chapter are:

« The developer/development tester, forideas on a better development test

e The test consultant who is asked to support (the organization of) the development
testing

« The test manager for the overall test process who has to coordinate the development
tests with the other test levels

e The line manager or project manager of the developers who is inferested in improved
confrol over the quality of the software produced, and who wants to know how this
can be achieved.

4.8.2 Development testing explained

This section consists of a number of subsections. These are, in sequence:
¢ Whatis development testing?
» Characteristic
With a focus on how they differ from system tests and acceptance tests
+ Advantages and disadvantages of improved development fests
+ Context of development testing
The influence of the development method and technical implementation
e Unit test
» Unitintegration test

359



48.2.1 What is development testing?

Development testing is understood to mean festing using knowledge of the tfechnical
implementation of the system. This starts with the testing of the first/smallest parts of the
system: routfines, units, programs, modules, components, objects, efc. Within TMap, the
term ‘unit’ and therefore unit test is used exclusively in this context.

When it has been established that the most elementary parts of the system are of sufficient
quality, larger parts of the system are tested integrally during the unit intfegration tests. The
emphasis here lies on the data throughput and the interfacing between the units up to
subsystem level.

Definition

Unit Test (UT)

The unit test is a test carried out in the development environment by the developer, with
the aim of demonstrating that a unit meets the requirements defined in the technical
specifications.

Unit Integration Test (UIT)

The unit integration test is a test carried out by the developer in the development
environment, with the aim of demonstrating that a logical group of units meets the
requirements defined in the technical specifications.

4.8.2.2 Characteristics

A pitfall in organizing development tests is the temptation to set up the test process from
the viewpoint of a system test or acceptance test. For when development tests are
compared with the system test and the acceptance test, a number of significant
differences come to the fore:

* In contrast to the system test and acceptance test, the development tests cannot be
organized as an independent process with a more or less independent team. The
development tests form an integral part of software development, and the phasing of
the test activities is integrated with the activities of the developers.

» Because development testing uses knowledge of the technical implementation of the
system, other types of defects are found than those found by system and acceptance
tests. It may be expected of development tests, for example, that each statement in
the code has been touched on. A similar degree of coverage is, in practice, very
difficult for system and acceptance tests to achieve, since these test levels focus on
different aspects. It is therefore difficult to replace development tests with system and
acceptance tests.

«  With the unit tests, in particular, the discoverer of the defects (i.e. the tester) is often the
same individual who solves them (i.e. the developer). This means that communication
on the defects may be minimal.

« The approach of development testing is that all the found defects are solved before
the software is transferred. The reporting of development testing may therefore be
more restricted than that of system and acceptance testing.

« Itis the first test process, which means that all the defects are still in the product,
requiring cheap and fast defect adjustment. In order to realize this, a flexible test
environment with few procedural barriers is of great importance.

« Development tests are often carried out by developers themselves. The developer’s
basic intention is to demonstrate that the product works, while a tester is looking to
demonstrate the difference between the required quality and the actual quality of the
product (and actively goes in search of defects). This difference in mindset means that

360




sizeable and/or in-depth development tests run counter to the developer’s intfention
and, with that, meet with resistance and/or result in carelessly executed tests.

In more detail

Figure 68 [Pettichord, 2000] sums up a number of salient characteristics of testers and
developers:

Testers Developers

Get up to speed quickly Thorough understanding
Domain knowledge Knowledge of product internals
Ignorance is important Expertise is important

Model user behaviour Model system design

Focus on what can go wrong Focus on how it can work
Focus on severity of problem Focus on inferest in problem
Empirical Theoretical

What's observed How it's designed

Skeptics Believers

Tolerate tedium Automate tedium
Comfortable with conflict Avoid conflict

Report problems Understand problems

Figure 68. Characteristics of testers and developers.

48.2.3 Advantages and disadvantages of improved development
tests

In practice, development testing is often unstructured: tests are not planned or prepared;
no test design techniques are used and there is no insight into what has or has not been
tested or with what test intensity. With that, insight is also lacking into the quality of the
(tested) product. Often during the system and acceptance tests, there are lengthy and
inefficient cycles of test/repair/retest in order to get the quality up to an acceptable level.
It therefore stands to reason that development testing should be better organized. A
number of arguments are presented below as to why this does not take place in practice
(arguments against) and why it is important that it should take place (arguments for).

Arguments against

The most important arguments as to why the need for more structure and thoroughness in

development testing is not self-evident are:

» Pressure of time / not cost-effective
Developers are often under severe pressure of time. The priorities of the development
team are defined by the criteria by which it is judged. Assessment is usually made
based on hard criteria, such as lead-time and delivered functionality. Assessment by a
much softer criterion, such as quality, is more difficult and is therefore rare in practice.
A developer who is committed to a completion date will either communicate openly
and honestly when things are not going smoothly, or give less time to his own testing if
the coding is in trouble. From the point of view of personal performance (and
assessment), the latter is not unthinkable. After all, benefits to a development team of
thorough testing are relatively small, even though they are many times greater for the
project as a whole.

« Sufficient faith in the quality
A developer is usually proud of his product and considers it to be of good quality. It is
therefore not logical as a developer to expend a lot of effort in finding fault with his
own product.

361




e There will be another thorough test to follow
In the subsequent phase, e.g. the system test, a much more intensive test will be
carried out than development testing can ever do. Why should the development
tester then pay much attention to more and better testing, when it is to take place
later more extensively?

Arguments in favor

The most important argument for more structure and thoroughness in development testing
is that it enables the developer to establish for himself that the software is of sufficient
quality to be delivered to the next phase, probably the system test. The meaning of
“sufficient quality” is of course open to discussion. Below is indicated that “sufficient
quality” has many advantages for the development team:

« Less reworking will be necessary after delivery, since the products that are delivered to
the subsequent phase are of higher quality.

¢ The planning is beftter, since the often uncertain volume of rework declines.

« The lead-time of the total development phase is, for the same reason, shorter.

e Reworking as early as possible is much cheaper than at a later stage, since all the
knowledge of the developed products is sfill fresh in the memory, whereas by the later
stage people have often already left the development team.

¢ Analyzing defects you find yourself is much faster and easier than analyzing defects
found by others. The more distance (both organizational and physical) the finder has,
the more difficult and time-consuming the analyzing often is. Even more so, since in
later phases the system is tested as a whole and the found defect may be located in
many separate components.

« The developers get faster feedback on the mistakes they make, so that they are better
able to prevent similar mistakes in other units.

» Certain defects, particularly on the boundaries of system functionality and underlying
operating system, database and network, can best be detected with development
tests. If the development testing finds too small a proportion of these defects, this will
have consequences for the system and acceptance tests, which then have to
produce a disproportionate effort (in the detection of such defects), using inefficient
techniques, in order o achieve the same quality of the test object had the
development tests been adequately executed.

These advantages apply for the total project, and even for the total life cycle of the
system fo a greater degree, because the later test levels also benefit from these
advantages (often even more sol), for example because much fewer retests are
necessary. Accordingly, the advantages of a more structured development test—
approach far outweigh the disadvantages. However, a necessary condition for successful
structuring of the development testing is that the various parties involved, such as the
client, the line and project manager and the developers, are aware of the importance of
a better test process. For example, the project manager should assess the development
team much more on delivered quality than simply on time and money. The development
department may also set requirements on all the executed development tests. Each
development test in an individual project should atf least meet these requirements.

483 Context of development testing

Development testing bears a very close relationship with the development process and
cannot really be considered separately from it. Much more knowledge of the technical
implementation of the system or package is required as far as development testing is
concerned than for a system or acceptance test. In order to organize the development
test well, allowance must certainly be made for the development process used and the
technical implementation.

362



Tip

Ensure that, as adviser or test manager in the organization of the development testing, you
have sufficient knowledge of the development process used and the technical
implementation. This will also make you a useful partner in the dialogue with the
developers, without having to be an expert.

48.3.1 Influence of the development method

Roughly three streams of development methods can be distinguished: waterfall, iterative
and agile.

«  Waterfall, which includes the following characteristics: the development of a system in
one go, phased with clear transfer points, often a long cyclical process (including
SDM)

» lterative, characterized by: incremental development of the system, phased with clear
transfer points; short cyclical process (iterations) (including DSDM and RUP). Iterative
methods take up an infermediate position between waterfall and agile.

* Agile, characterized by four principles: individuals and interaction above processes
and tools, working software above extensive system documentation, user input above
contract negotiation, responding to changes above following a plan (including
eXtreme Programming and SCRUM).

To discover what influence the development method has on (the organization of) the

development testing, it should be considered to what degree the following aspects play a

role:

» Instructions for development test activities
Many methods go no further than indicating that development tests need to be carried
out. Structured guidelines are seldom supplied. Exireme Programming (XP), as one of
the agile methods, is a positive exception in this area. Three of the most important
practices in development testing are Pair Programming, Test-Driven Development and
Continuous Integration.

* Quality of the test basis
The waterfall method is usually established in a formally described form. With iterative
and agile development methods, the form of the test basis is much less formal and
often agreed verbally (through consultation with users). This means that it is more
difficult with iterative and agile methods to discover all that requires to be tested. For
example, the fault handling and exceptional situations (together estimated to be as
much as 80% of the code) are often under-exposed in such forms of test basis. Greater
reliance is placed on the expertise and creativity of the development testers as regards
devising and executing tests for these

e Long- or short-cyclical development
With short-cyclical development, proportionately more time is spent on testing,
particularly due to the need to execute a much more frequent regression test (every
cycle at minimum) on the system so far developed.

48.3.2 Influence of the technical implementation

Over the years, the IT world has grown into a patchwork quilt of technological solutions. To
represent this simply, you could say that the first systems were set up as monoliths, meaning
that the presentation, application logic and information storage were one giant whole.
Some of these systems have been in operation for more than 30 years now. The monolithic
systems were followed by systems based on client/server architectures. Then came the 3-

363



layer systems with separate presentation, application logic and database layers. In
parallel with this, obviously, there was the rise of the big software packages, such as SAP,
and of Internet and browser-based applications. These days, many systems are set up in
distributed fashion, which means that they consist of different, often physically dispersed,
components or services, while the system is still seen by the outside world as a cohesive
whole, owing to close collaboration.

The systems were developed with the aid of a large arsenal of programming languages,
whether or not object-oriented, in development environments that support (automated)
testing to a greater or lesser degree.

As indicated in section 4.1.3, “The essentials of TMap NEXT®", testing is a risk-based activity,
in which risk = chance of failure x damage, with chance of failure = frequency of use x
chance of a fault. The relevance of the above summary of 50 years of system
development in one paragraph is that the technical implementation determines to a
great degree the type of faults that can be made and in which parts the chances of faults
are the greatest. The test strategy of development testing is thus strongly dependent on
the technical implementation, more so than the system and acceptance tests, where
more attention is paid to the specifications of the system and the potential damage.

In more detail

The increasing use of distributed systems with large numbers of components and services
places high demands on the quality of the individual components or services. The
complex collaboration between all these components and services makes the finding of
the source of a defect very difficult and time-consuming. The result of integrating
qualitatively inadequate components or services into the system and hoping that the
defects will be found by the system or acceptance tests will be that the required system
quality (on time and within budget) cannot be delivered. The technical nature of many
components and services means that the development tests bear a heavier responsibility
for establishing that the separate components or services are of sufficient quality before
they are integrated.

484 Unit test

In unit testing, it is important to realize what the place of testing is within development. The
unit testers are usually the developers, who test their own unit. The development project
leader, a separate test coordinator or the application integrator coordinate the tests.

A point to note is the specifying of test cases. Developers do not always see the usefulness
of this. By opting where possible for ‘light’ test design techniques and elementary forms of
test documentation in particular, the degree of acceptance is considerably increased.
Particularly with manual unit tests, considerable powers of persuasion are necessary to
convince the developers that the writing out of test cases in those specific instances offers
advantages over the unprepared execution of the tests.

In more detail

A good example that shows the advantage of test design techniques and the specifying
of test cases is the testing of a multiple condition (IF A=1 and B=2 and C=3 THEN ...). With
the aid of the test design technique Elementary Comparison Test (ECT), it is relatively
simple to derive a limited set of test cases (4 in this example) that provide a high degree of
test coverage. Deriving test cases without a technique here quickly leads to either too
meager test coverage or a multiple of test cases (8 in this example).

364



More and more development environments are now making it possible fo include the
(automated) test code in the (source) code. The unit test then consists of starting the test
code, which subsequently executes (a part of) the source code. Such unit tests are
grouped into a ‘test harness’.

Definition

A test harness is a collection of software and test data configured for a development
environment with the purpose of testing one unit or a series of units, whereby the
behaviour and output are checked.

The writing of unit tests in a fest harness is an extra effort that should not be ignored.
Experience teaches us that the developing of test code costs 10%-30% exira effort
[Vaaraniemi, 2003].

Development methods have firmly embraced the possibility of including test code directly
with the (source) code. Initiatives like Test-Driven Development (see section 7.2.7) make
testing an increasingly important part of system development.

48.5 Unit integration test

When a unit has been tested and approved, it can be integrated with other units into a
working (part of the) system. Rarely are all the units combined and tested at one time -
the so-called "big bang" scenario. The disadvantage of this late integration is that, in
general, many defects are found, and fracing the causes takes up a lot of fime. A more
effective method is integrating numbers of units together in steps and testing after each
integration step. In this way, defects are found at an early stage, when the cause is still
relatively easy to detect. Unit integration testing thus plays a role particularly in repeatedly
demonstrating that the new or amended unit(s) continue to work well in conjunction with
earlier integrated unifts.

The best sequence of integration and the number of intfegration steps required depends
on the location of the most risk-related parts of the system. Ideally, the integration starts
with those units in which the most problems are expected. This prevents serious problems
arising at the end of the unit integration test.

Executing unit infegration tests requires extensive knowledge of the content, structure and
especially the information exchange of underlying units. This in-depth knowledge means
that often a separate role is allocated to the infegration of units: the application
integrator.

The developments in the area of development environments also facilitate automated
compilation, integratfion and testing. This takes place with the aid of ‘build & deploy’
scripts. ‘Build’ in this context is the combining of the various software components into a
software package that can be exported to a particular environment. ‘Deploy’ is the rolling
out of the software in the target environment, in other words the conversion of the
software package into the operational (installed) form. Scripts make it possible to execute
build & deploy by automation. Within the build & deploy scripts, the test harness is called
up. In this, besides the automated unit tests, tests are also built and executed that exceed
the boundaries of the units and the integration fests. Integration test cases often form a
functional path from beginning to end through the application. By making use of stubs
and drivers tests can be included at an early stage that run through the application from
beginning to end. As with automated execution of unit tests, this possibility of automatic
integrating and testing has found its way into the development methods. Rather than
seeing the integration (test) as mainly a concluding activity, the Continuous Integration

365




method has been infroduced, which brings to the fore as much as possible any problems
in connection with the combining of unifs.

4.9 Estimating the test effort

Estimation techniques

There are various techniques to create an estimate. This chapter begins with an
explanation of the different levels at which estimates can be done and an overview of the
suitable techniques for estimating specific quality characteristics. The following estimating
techniques are then discussed:

« Estimation based on ratios

e Estimation based on test object size

»  Work Breakdown Structure

« Evaluation estimation approach

« Proportionate estimation

» Extrapolation

» Test point analysis

Estimating
Estimates can be made at various levels, as shown in figure 69.

MTP estimate

l

Estimate per test level

l

Estimate per test phase

l

Estimate per test activity

Figure 69. Estimation levels.

Estimates for a MTP are created early on in the project. Often, not all knowledge of the test
object is available at this point. As a consequence, the accuracy of the estimate is limited.
The size and complexity of the test object may change during the project. It is important
for the test manager to make it clear to the stakeholders that the estimate is based on a
number of assumptions and therefore details will have to be added later. A possible
solution is fo use margins to represent the initial estimate for an MTP.

The estimate in the MTP constitutes the framework for the estimates per test level (e.g.
system test, user acceptance test, and production acceptance test). The required fime for
the various phases — Confrol, Setting up and maintaining infrastructure, Preparation,
Specification, Execution and Completion —is then established for the test level. Separate
test activities are estimated within the test phases. The time necessary to create the MTP
(Planning) is not included in the estimates. A fixed number of hours is usually estimated for
this. After all, establishing the plan consists of executing clearly defined activities. The
impact of e.g. the test object size on the time required to create the MTP is limited in this
context. If there is an impact, it will be noticeable in particular during the activities
“Analyzing product risks” and “Determining test strategy”. In practice, some 60 to 160
hours are usually invested in creating the MTP.

366



As the estimate is made later in the test process and therefore at a lower level, more
knowledge of the test object is available. Moreover, experiences from earlier on in the
process can be used, making the estimate more accurate.

Independent of the level, creating the plan consists of the following generic steps:
Inventory the available material that can serve as a basis for the estimate:
1. Inventorize the available material that can serve as a basis for the estimate.

2. Select (a number of) estimating techniques.
It is recommended to use multiple fechniques in parallel. This makes it possible to
compare the outcome of the various techniques. In addition fo estimating fechniques,
it is worthwhile asking an experienced employee to make an estimate of the required
fime (expert estimate).

3. Determine the definitive estimate.
The aim of this step is fo combine the outcomes of the previous step intfo one single
estimate. If the outcomes vary little, taking an average will work. In other cases the
differences have to be analyzed. If an adequate estimate cannot be made after
analyzing the differences, the client must be consulted. The test manager explains the
problems and makes proposals to achieve a correct estimate.

4. Present the outcome.
The aim of presenting the outcome is to provide insight to the business info the
consequences of the selected test strategy and approach. It is important to show
clearly which assumptions were made. Especially with an estimate created very early
on in the process, assumptions will be involved that will become more concrete later on
in the process.

As discussed earlier, there are various estimating fechniques to create an estimate.
Choosing the right ones in particular is a step requiring experience. The sections below
describe the estimating techniques, based on the following principles:

« Estimating the test activities in the development phase (unit test and unit integration
test) is an integrated component in estimating the realization project and is not taken
into consideration unless explicitly specified.

» Where possible, experience figures are mentioned for the specified techniques. We
explain the background of these figures. The figures shown must always be considered
within the described context. They do not necessarily apply in a different situation.

« Oneretestisincluded in all of the experience figures mentioned in subsequent sections.

Please refer to section 4.11, “Metrics”, for the structured collection and analysis of test

estimating figures.

An adequate choice from the various techniques can be made with the use of two
tables. These tables answer the following two questions:

« Which technique is suitable for which level of estimating?

« Which techniques are suitable for estimating which quality characteristics?

The answers to these questions are shown in the tables below.

Master test Detailed test | Test phase | Test activity
plan plan
Estimating based on ratios X X X (X)
Estimating based on size X
Work Breakdown Structure (WBS) X X X X
Evaluation estimating fechniques X
Proportionate estimation X X X (X)

367



Master test Detailed test | Test phase | Test activity
plan plan
Extrapolation X X
Test point analysis (estimating based
. X X
on size and strategy)

The possible estimating techniques are shown per quality characteristic in the table below.
The table distinguishes between three different levels of test intensity for explicit tests, i.e. e,
ee and ¢+ (low, medium and high).

Evaluation ut uiT Implicit test Explicit test Explicit test | Explicit test

Test intensity = . . . . oo eoe
Quality
characteristic No. of 2) 2) 3

pages !
U

Connectivity Tpa-s R _ _
Gonfinity Tpos imebox! | Tmebox’ | Timebox!
Data controllability Tpa-s - - -
Effectivity Tpa-s Toadl Tpadl Wbs
Efficiency Toa-s - Wbs -
Flexibility Tpa-s - _ _
Functionality Toa-s Sg;’; Sg;'; Toa Toa Toa
Infrastructure Tpa-s - - -
Manageability Tpa-s Whbs5) R R
Maintainability Tpa-s _ R R
PBeGrIngonce Toass Tpa Tpa Tpa
Online Whbs Whbs Whbs
Portability Toa-s Whbs Tpa Tpa
Reusability Tpa-s _ _ _
Security Toa-s Toa Tpa Wbs
Suitability Tpa-s Toa®) Toadl Toa
Testability Tpa-s - - -
User-friendliness Tpa-s Wbs Wbs Wbs

Notes on the table:

- Itis not possible to indicate a specific estimating technique for this level of test intensity.

1) Several pages must be read when evaluating infermediate products on quality
characteristics. Quality characteristics that have to do with functionality require a study
of the pages on which the functionality is described. Other quality characteristics are
generally described on other pages. This results in a varying number of pages per
quality characteristic for verification.

2) Itis assumed that the estimate of the standard test activities in the UT and UIT is part of
the estimate of the realization. If desirable, extra attention to testing during the UT and

368



UIT can be specified. The estimating technique for this is an hour box, in which e.g. a
supplement rate is added to the build effort (e.g. 10%) or part of the effort for the ST.

3) TPA-iis the component for implicit testing of a quality characteristic during the testing of
another quality characteristic. In TPA, this results in an additional supplement of 0.02
when determining the Qu.

4) TPA-s is the evaluation component of TPA.

5) WBS = Work Breakdown Structure.

6) If effectivity and suitability are tested with the same test type/test technique, the effort
isincluded once.

7) The fime box and hour box are determined by factors outside the test process. Time box
week in the table above means that testing takes a period of one week.

4.9.1 Estimation based on ratios

To use ratios as a basis to create an estimate, it is important to collect the greatest possible
amount of experience figures. This makes it possible to derive ‘standard’ ratios for similar
projects. Similar projects are projects that are the same in terms of certain key properties.
For instance the same development method, the same development platform, the same
software environment, the same experience level of the developers, etc.

Naturally, the own ratios of an organization generally are the best ones to use within that
organization. Ratios can be used at all estimation levels. At the level of test activities in test
phases however, the ratios are so specific that they can only be used within one
organization and often even within the area of application (project or system).

Below please find a number of ratios between tests and other development activities from
actual practice. An organization can use these observations as a starting point. By then
keeping frack of its own experience figures, the organization can match the ratios more
and more adequately to its own practice.

The various observations are based on the following standardization of terms:

¢ Functional design (FD) = functional detailed design.

e Readlization, consisting of the technical design (TD), programming (P), unit and unit
integration test (UT and UIT).

¢ Functional test. This concerns the testing of the functionality quality characteristic, with
the FD as the test basis. The ST and AT test levels are used for this purpose.

Observed ratios in an average risk profile are as follows:

e FD :Redlization : Functional test=2:5:3
In an environment with a formally complete FD, waterfall development method, 3GL
programming language, and a structured test method of operation. These figures were
found to apply for the activities in the maintenance phase as well, with testing only
involving a test of the change.

» (FD+TD) : (P + UT + UIT) : Functional test=1:3:3
In an environment with an incompletely detailed FD, experienced builders who fill the
FDs themselves, and a starting fest method of operation.

e FD :Redlization : Functionaltest=1:2:1.2
In a test environment with a formally complete FD, waterfall development method,
experienced builders, and a functional test that does not have maximum test
coverage but is driven by risk, and a maximized budget. The method of operation is
structured.

Within a test level, ratios can be used to estimate the various phases. Here, too,
observations from actual practice are available:

369



e For asystem test with good but complex specifications, the observed ratio is as follows:
Preparation 6%, Specification 54%, Execution 21%, Completion 2%, and 17% for Conftrol
and Setting up and maintaining infrastructure taken together.

» The following ratio was observed for a system with an inadequate test basis:
Preparation 21%, Specification 33%, Execution 24%, Completion 5%, and 17% for Control
and Setting up and maintaining infrastructure taken together.

Note: in both cases, 160 hours were spent on creating the MTP.

4.9.2 Estimation based on test object size

The size of the test object can be established in different ways. The term Test Object Size
Meter (TOSM) is used to indicate the size of a test object in a uniform manner. Based on a
test object size determined this way, the following number can be used to estimate the
functional test even without the strategy being known (yet).

1.5 to 4 hours per size unit (TOSM)

The actual number for a specific area of application depends on:

e type of environment (web, database)

* support provided

« quality of the test basis

» size of the project, towards factor 2 for very small and very big projects
* required reporting

« experience of testers.

Organizations can maintain experience figures to make ever more reliable estimates.

The size of a test object (and therefore the number of TOSMs) can be established in the

following ways:

« Detailed functional description
A function point analysis can be performed on a detailed functional description (e.g. a
functional design). The result of the function point analysis is a number of function points
(FP). One function point is then equaled to one TOSM, making the size of the test object
(= number of TOSMs) the same as the number of function poinfs.

» Data model
If a data model is available, the following approach can be used to establish the size of
the test object: determine the number of logical data collections (LDCs) and estimate
the complexity. The size of the test object is found by multiplying the number of data
collections by the value in the table below.

Complexity
No. of LDCs
Low Medium High
<10 25 28 35
10-25 28 35 42
> 25 35 42 47

¢ Requirement pages
The literature contains experience figures to relate the size of the test object to the
number of requirement pages. Generally speaking, this means that not all information
concerning the conditions under which the data were measured is available.
° 1 A4d-sized page of requirements without diagrams = 15 TOSMs [Collard, 1999].

370



° In alarge classical project in which a highly detailed functional design without
illustrations was available, the following experience figure was measured:
° 1 A4-sized page of requirements = 2.5 to 3 TOSMs.
*  Number of screens
If the number of screens is a determinant for the size of the application, the following
derivation can be used [Collard, 1999]:
1 screen (window/webpage) = 8 TOSMs.
» Program source code
For a new development project, clearly the program source code is not available unfil
after the realization process. For a migration or maintenance project, for instance, the
derivations below may be applicable:
° 1kilolines of code (3 GL) = 17 TOSMs [Collard, 1999].
° [Capers Jones, 1996]

1 KLOC (kilo lines of Number of
code) TOSMs
C 6,6
Algol, Cobol, Fortran 10
PL/1 12
Lisp, basic 16
4GL database 25
Objective C 39
Smalltalk 49
Query languages 60
4.9.3 Work Breakdown Structure

The Work Breakdown Structure (WBS) is an estimating approach based on splitting up the
activities into partial activities up to a level of detail at which the required time per activity
can be estimated. By adding the time required for the partial activities, the total required
time is calculated.

The table below shows the number of hours per quality characteristic. For quality
characteristics where the strategy matters, this is shown. The hours are derived from actuall
practice. Please note that the experience base and therefore the how hard the figures
are differs. Levels of hardness are:

e Hard: experience from multiple projects, confirmed on the basis of multiple sources

» Experience: based on a few sources

« Soft: an estimate by experienced test consultants.

Practice demonstrates which factors have the greatest impact on the definitive number of
hours. These factors are shown.

Quality characteristic Strategy Hardness Hours | Important factors for variation in size
estimation
Manageability
24
Installability soft
Security oo experience 80 | Minimal, hour box
Effectivity b soft 350 Incl. hours of users
Continuity een N/A Depends on the duration of shadow

production

371



Quality characteristic Strategy Hardness Hours | Important factors for variation in size
estimation

Userfriendiiness hard 70 Size of application (limit 15/100 screens)
User-friendliness °* hard 80 | scope of research question (limit: several
User-friendliness eoe hard 130 | subijects)
Performance, online 109 | Low: 15 user fasks

o hard tot | High: 40 user tasks

224 Complex database

Portability . soft 28
Efficiency . soft 28

Please note: The table above does not include hours for e.g. setting up a usability lab or
selecting test-support packages. The starting point is that the required facilities must be
available.

4.9.4 Evaluation estimation approach

One of the size bases for evaluations often mentioned in the literature is the number of
pages of the document that is being evaluated.

Figures from the literature: 1-4 pages per hour per evaluator per size unit, depending on:

» the number of quality characteristics looked at

« the evaluator’s experience

+ the required depth

+ the formality of the evaluation type — the more formal the evaluation, the more fime it
takes.

4.9.5 Proportionate estimation

This estimating technique is based on a total quantity of budgeft to test the entire test
object. The total amount is divided over the distinguished components. When dividing the
total budget over the various components, the allocated risk class (for a test strategy) and
the size of the components are taken into account. A factoris chosen for each risk class
(in the test strategy) that enables a weighted distribution. For example:

» Risk class A is allocated a factor 1.5

e Risk class B is allocated a factor 1

e Risk class Cis allocated a factor 0.6.

The steps to derive an estimate are as follows:
1. Calculate the product of the size of the object part to be tested with the factor
associated with the risk class of that object part. Do this for all object parts.

2. Add the outcomes from step 1.
3. Determine the scaling factor by dividing 100 by the result of step 2.

4. Calculate the number of hours per object part by multiplying the results of step 1 by the
scaling factor.

372



An example to clarify this

100 hours are to divided over 5 object parts. The size and a risk class have been
determined for each object part. The number of hours per object part is then established
following the steps above.

Object Size Risk class | Factor Size x Scaling factor | Number of
part Factor hours

1 10 C 0.6 6 7.86

2 15 A 1.5 22.5 29.48

8 7 B 1 7 9.17

4 25 A 1.5 37.5 49.12

5 5 C 0.6 3 3.93
Totall 76 100/76=1.31 100 (100.56)
4.9.6 Extrapolation

In this estimating method, measurements are made as early on in the project as possible to
build experience figures. Once it is known what percentage of the work was done in how
much time, it can be established (on approximation) how much time is required for the
remainder of the work.

This method is used a lot in practice to estimate test activities within a test level. It is also
very suitable to estimate test activities in incremental development methods.

4.9.7 Test point analysis

This section describes the test estimating technique test point analysis (TPA). Test point
analysis makes it possible fo estimate a system test or acceptance fest in an objective
manner. Development testing is an implicit part of the development estimate and is
therefore outside the scope of TPA. To apply TPA, the scope of the information system must
be known. To this end, the results of a function point analysis (FPA) are used. FPAis a
method that makes it possible to make a technology-independent measurement of the
scope of the functionality provided by an automated system, and using the measurement
as a basis for productivity measurement, estimating the required resources, and project
control. The productivity factor in function point analysis does include the development
tests, but not the acceptance and system tests.

Test point analysis can also be used if the number of test hours to be invested is
determined in advance. By executing a test point analysis, any possible risks incurred can
be demonstrated clearly by comparing the objective test point analysis estimate with the
number of test hours determined in advance. A test point analysis can also be used to
calculate the relative importance of the various functions, based on which the available
test time can be used as optimally as possible. Test point analysis can also be used to
create a global test estimate at an early stage.

49.7.1 Philosophy

When establishing a test estimate in the framework of an acceptance or system test, three

elements play a role (see figure 70 “Estimating basic elements”):

« The size of the information system that is to be tested.

« The test strategy (which object parts and quality characteristics must be tested and
with what thoroughness, what level of test intensity?).

* The productivity.

373



The first two elements together determine the size of the test to be executed (expressed as
test points). A test estimate in hours results if the number of test points is multiplied by the
productivity (the fime required to execute a specific test intensity level). The three
elements are elaborated in detail below.

Test object

size Test strategy Productivity

¥

Estimating

A

Estimated test effort

Figure 70. Estimating basic elements.

Size
Size in this context means the size of the information system. In test point analyses the figure
for this is based primarily on the number of function points. A number of additions and/or
adjustments must be made in order to arrive at the figure for the test point analysis. This is
because a number of factors can be distinguished during testing that do not or barely
play a part when determining the number of function points, but are vital to festing. These
factors are:
«  Complexity
How many conditfions are present in a function? More conditions almost automatically
means more test cases and therefore greater test effort.
« System impact
How many data collections are maintained by the function and how many other
functions use them? These other functions must also be tested if this maintenance
function is modified.
» Uniformity
Is the structure of a function of such a nature that existing test specifications can be
reused with no more than small adjustments. In other words, are there multiple functions
with the same sfructure in the information system?

Test strategy

During system development and maintenance, quality requirements are specified for the
information system. During testing, the extent to which the specified quality requirements
are complied with must be established. However, there is never an unlimited quantity of
test resources and test time. This is why it is important to relate the test effort to the
expected product risks. We use a product risk analysis (section 2.6) to establish, among
other things, test goals, relevant characteristics per test goal, object parts to be
distinguished per characteristic, and the risk class per characteristic/object part. The result
of the product risk analysis is then used o establish the test strategy. A combination of a
characteristic/object part from a high risk class will often require heavy-duty, far-reaching
tests and therefore a relatively great test effort when translated to the test strategy. The
test strategy represents input for the test point analysis. In test point analysis, the test
strategy is franslated to the required test time.

374



In addifion to the general quality requirements of the information system, there are
differences in relation to the quality requirements between the various functions. The
reliable operation of some functions is vital to the business process. The information system
was developed for these functions. From a user's perspective, the function that is used
intensively all day may be much more important than the processing function that runs at
night. There are therefore two (subjective) factors per function that determine the test
intensity: the user importance of the function and the intensity of use. The test intensity, as it
were, indicates the level of certainty or insight into the quality that is required by the client.
Obviously the factors userimportance and intensity of use are based on the test strategy.

The test strategy tells us which combinations of characteristic/object part must be tested
with what thoroughness. Often, a quality characteristic is selected as characteristic. The
test point analysis also uses quality characteristics, which means that it is closely related to
the test strategy and generally is performed simultaneously in actual practice.

Tip

Linking TPA parameters to test strategy risk classes

TPA has many parameters that determine the required number of hours. The risk classes
from the test strategy can be translated readily to these parameters. Generally, the TPA
parameters have three values, which can then be linked to the three risk classes from the
test strategy (risk classes A, B and C).

If no detailed information is available to divide the test object into the various risk classes,
the following division can be used:

o 25%risk class A

e 50% risk class B

e 25%risk class C.

This division is then used as the starting point for a TPA.

Productivity

Using this concept is not new to people who have already made estimates based on
function points. Productivity establishes the relation between effort hours and the
measured number of function points in function point analysis. For test point analysis,
productivity means the time required to realize one test point, determined by the size of
the information system and the test strategy. Productivity consists of two components: the
skill factor and the environment factor. The skill factor is based primarily on the knowledge
and skills of the test team. As such, the figure is organization and even person-specific. The
environment factor shows the extent to which the environment has an impact on the test
activities to which the productivity relates. This involves aspects such as the availability of
test tools, experience with the test environment in question, the quality of the test basis,
and the availability of testware, if any.

375



4.9.7.2 Global method of operation

Schematically, this is how test point analysis works:

testablgestpoints evaluabletestpoints

total# testooints

environment factor Pie skill factor
primarytesthours
< supplemerttours

total# testhours

Figure 71. Schematic representation of test point analysis.

Based on the number of function points per function, the function-dependent factors
(complexity, impact, uniformity, user importance and intensity of use), and the quality
requirements and/or test strategy relating fo the quality characteristics that must be
tested, the number of test points that is necessary to test the testable quality
characteristics is established per function (testable means that an opinion can be
achieved on a specific quality characteristic by executing programs). Adding these test
points over the functions results in the number of testable test points.

Based on the total number of function points of the information system and the quality
requirements and/or test strategy relating fo the quality characteristics that need to be
evaluated, the number of test points that is necessary to evaluate those quality
characteristics is established (evaluation: assessment of interim products without running
software). This results in the number of evaluation test points.

The total number of test points is realized by adding the evaluable test points to the
testable test poinfts.

The primary test hours are then calculated by multiplying the total number of test points by
the calculated environment factor and the applicable skill factor. The number of primary
test hours represents the time necessary to execute the primary test activities. In other
words, the time that is necessary to execute the test activities for the phases Preparation,
Specification, Execution and Completion of the TMap life cycle.

The number of hours that is necessary to execute secondary test activities from the Control
and Setting up and maintaining infrastructure phases (additional hours) is calculated as a
percentage of the primary test hours.

Finally, the total number of test hours is obtained by adding the number of additional hours

to the number of primary test hours. The total number of test hours is an estimate for all
TMap test activities, with the exception of creating the test plan (Planning phase).

376



Principles
The following principles apply to test point analysis:

« Test point analysis is limited to the quality characteristics that are 'measurable’. Being
measurable means that a test technique is available for the relevant quality

characteristic. Moreover, sufficient practical experience must be available in relation to

this test technigque in terms of the relevant quality characteristic to make concrete
statements about the required test effort.

« Noft all possible quality characteristics that may be present are included in the current
version of test point analysis. Reasons for this vary — there may be no concrete test
technique available (yet), or there may be insufficient practical experience with a test
technique and therefore insufficient reliable metrics available. Any subsequent version
of test point analysis may include more quality characteristics.

« In principle, test point analysis is not linked to a person. In other words, different persons
executing a test point analysis on the same information system should, in principle,
create the same estimate. This is achieved by letting the client determine all factors
that cannot be classified objectively and using a uniform classification system for all
factors that can.

« Test point analysis can be performed if a function point count according to IFPUG
[IFPUG, 1994] is available; gross function points are used as the starting point.

« Test point analysis does not consider subject matter knowledge as a factor that
influences the required quantity of test effort in test point analysis. However, it is of
course important that the test team has a certain level of subject matter knowledge.
This knowledge is a precondifion that must be complied with while creating the test
plan.

« Test point analysis assumes one complete retest on average when determining the
estimate. This average is a weighted average based on the size of the functions,
expressed as test points.

Tip

From COSMIC full function points (CFFP) to function points (FP)

To estimate the project size, the COSMIC? Full Function Points (CFFP) approach is used
more and more often in addition to the Function Point Analysis (FPA) approach [Abran,
2003]. FPA was created in a period in which only a mainframe environment existed and
moreover relies heavily on the relationship between functionality and the data model.
However, CFFP also takes account of other architectures, like client server and multi tier,
and development methods like objected oriented, component based, and RAD.

The following rule of thumb can be used to convert CFFPs to function points (FPs):

o if CFFP <250 : FP = CFFP

e if 250 < CFFP < 1000 :FP=CFFP /1.2

» if CFFP > 1000 :FP=CFFP /1.5

TPA, the technique in detail

49.7.3 Input and starting conditions

To perform a test point analysis, one must have a functional design. The functional design
must include detailed process descriptions and a logical data model, preferably including
a CRUD matrix. Moreover a function point count must have been executed according to
IFPUG. These function point methods can be used as input for TPA. It is important to use
only one of these function point methods when determining the skill factor, not multiple

? COSMIC: COmmon Software Measurement International Consortium

377



methods combined. In a function point count, the number of gross function points is taken

as the starting point. Which function point method is used is not important when

determining the test points. It will, however, have an impact on the skill factor.

The following modifications must be made to the function point count for TPA:

» The function points of the (logical) data collections distinguished in the function point
count must be allocated to the function(s) that handle(s) the input of the relevant
(logical) collection.

« The function points of the interface data collections distinguished in the function point
count must be allocated to the function (or possibly functions) that use(s) the relevant
interface data collection.

» For FPA functions in the clone class, the number of function points that applies to the
original FPA function is used. A clone is an FPA function that has already been specified
and/or realized in another, or the same, user function in the project.

» For FPA functions in the dummy class, the number of function points is determined if
possible. Else this FPA function is given the qualification average complexity and the
corresponding number of function points. A dummy is an FPA function if the
functionality does not have to be specified and/or realized, but is already available
because it was specified/realized outside the project.

Tip

Estimating guideline for counting function points

If no function point count is available and you wish to make one (for TPA), the following
guideline can be used to determine the time required to count the function poinfs:
Determine the number of TOSMs using one of the methods described in section 11.3 and
divide it by 400. The outcome represents an estimate of the number of days necessary to
count the function poinfs.

Note: as a rule, 350 to 400 function points can be counted in a day.

Calculation example (1)
Number of function points (FPf)

An information system has two user functions and one internal logical data collection:
Registration (11 function points), with as underlying FPA functions:

Entry 3 function points
Editing 4 function points
Deleting 4 function points

Processing (12 function points), with as underlying FPA functions:
Overview 1 5 function points
Overview 2 7 function points

The internal logical data collection ‘data’ has 7 function points and is allocated to the
enfry function in the context of test point analysis.

FP: Registration 18 function points
FP: Processing 12 function points

(FPs = function points per function)

378



49.7.4 Testable test points

The number of testable test points is the sum of the number of test points per function in
relation to testable quality characteristics. The number of test points is based on two types
of factors:

« function-dependent factors (Ds)

« factorrepresenting the testable quality characteristics (Qaq)

The FPA function is used as a unit of function. When determining the user importance and
intensity of use, the focus is on the user function as a communication resource. The
importance the users attach to the user function also applies to all of the underlying FPA
functions.

Function-dependent factors

The function-dependent factors are described below, including the associated weights.
Only one of the three described values can be selected (i.e. intermediate values are not
allowed). If too little information is available to classify a certain factor, it must be given the
nominal value (in bold print in this section).

Userimportance

User importance is defined as the relative importance the user attaches to a specific
function in relation to the other functions in the system. As a rule of thumb, around 25% of
the functions must be in the category “high”, 50% the category “neutral”, and 25% in the
category “low".

User importance is allocated to the functionality as experienced by the user. This means
allocation of the user importance to the user function. Of course, the user importance of a
function must be determined in consultation with the client and other representatives of
the user organization.

Weight
3 low: the relative importance of the specific function in relation to the other functions is
low

6 Neuftral: the relative importance of the specific function in relation to the other
functions is neutral

12 high: the relative importance of the specific function in relation to the other functions
is high.

Intensity of use

Intensity of use is defined as the frequency at which a certain function is used by the user
and the size of the user group that uses that function.

As with user importance, intensity of use is allocated to functionality as experienced by
users, i.e. the user functions.

Weight
2 low: the function is executed by the user organization just a few times per day or per
week

4 nevutral: the function is executed by the user organization many times per day
8 high: the function is executed continuously (at least 8 hours per day).

System impact

System impact is the level at which a mutation that occurs in the relevant function has an
impact on the system. The level of impact is determined by assessing the logical data

379



collections (LDCs) to which the function can make mutations, as well as the number of
other functions (within the system boundaries) that access those LDCs.

The impact is assessed using a matrix that shows the number of LDCs mutated by the
function on the vertical axis, and the number of other functions accessing these LDCs on
the horizontal axis. A function counts several fimes in terms of impact when it accesses
multiple LDCs that are all maintained by the function in question.

Functions
No. of LDCs
1 2-5 >5
1 L L M
2-5 L M H
>5 M H H

Explanation: L = Low impact, M = Medium impact, H = High impact.

If a function does not mutate any LDCs, it has a low impact. A CRUD matrix is very useful
when determining the system impact.

Weight
2  the function has a low impact

4 the function has a medium impact
8 the function has a high impact.

Complexity

The complexity of a function is assessed on the basis of its algorithm. The global structure of
the algorithm may be described by means of pseudo code, Nassi-Shneidermann or
regular text. The level of complexity of the function is determined by the number of
conditions in the algorithm of that function. When counting the number of conditions, only
the processing algorithm must be taken into account. Conditions resulting from database
checks, such as validations by domain or physical presence, are not included since they
are already incorporated implicitly in the function point count.

As such the complexity can be determined simply by counting the number of conditions.
Composite conditions, such as IF a AND b THEN count double for complexity. This is
because two IF statements would be needed without the AND statement. Likewise, a
CASE state